
CHIME: A Cache-Efficient and High-Performance
Hybrid Index on Disaggregated Memory

Xuchuan Luo\ ˇ “ , Jiacheng Shen ˘ “ , Pengfei Zuo ˘“ , Xin Wang\ ¯ , Michael R. Lyu

ˇ“ , Yangfan Zhou\ ˇ “\School of Computer Science, Fudan University
ˇ “National Key Laboratory of Parallel and Distributed Computing, China

˘ “Duke Kunshan University

˘“ Huawei Cloud

ˇ“ The Chinese University of Hong Kong¯ Shanghai Key Laboratory of Intelligent Information Processing, Shanghai, China

Abstract
Disaggregated memory (DM) is a widely discussed data-
center architecture in academia and industry. It decouples
computing and memory resources from monolithic servers
into two network-connected resource pools. Range indexes
are widely adopted by storage systems on DM to efficiently
locate and query remote data. However, existing range in-
dexes on DM suffer from either high computing-side cache
consumption or high memory-side read amplifications. In
this paper, we propose CHIME, a hybrid index combining
B+ trees with hopscotch hashing, to achieve low cache con-
sumption and low read amplifications simultaneously. There
are three challenges in constructing CHIME on DM, i.e., the
complicated optimistic synchronization, the extra metadata
access, and the read amplifications introduced by hopscotch
hashing. CHIME leverages 1) a three-level optimistic synchro-
nization scheme to synchronize read and write operations
with various granularities, 2) an access-aggregated metadata
management technique to eliminate extra metadata accesses
by piggybacking and replicating metadata, and 3) an effec-
tive hotness-aware speculative read mechanism to mitigate
the read amplifications of hopscotch hashing. Experimental
results show that CHIME outperforms the state-of-the-art
range indexes on DM by up to 5.1× with the same cache
size and achieves similar performance with up to 8.7× lower
cache consumption.

CCS Concepts: • Information systems → Distributed
storage; Data structures.

Keywords: Disaggregated Memory, RDMA, Hybrid Index,
B+ Tree, Hopscotch Hashing
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’24, November 4–6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1251-7/24/11
https://doi.org/10.1145/3694715.3695959

Read Amplification

CHIME

highlow

high
Radix Tree

(e.g., SMART)

B+ Tree
(e.g., Sherman)

Learned
Index

(e.g., ROLEX)

Better

low

discrete

contiguous

Ca
ch

e
Co

ns
um

pt
io

n

Figure 1. The trade-off between cache consumption and read
amplifications for existing DM range indexes [32, 36, 56].

1 Introduction
The disaggregatedmemory (DM) architecture is beingwidely
discussed due to its potential to improve datacenter resource
utilization [2, 21, 28, 43, 48, 50]. It decouples computing and
memory resources into independent computing and mem-
ory pools and interconnects them with fast networks, e.g.,
InfiniBand [6] and compute express link (CXL) [11].

Range indexes [32, 36, 56] are cornerstones for storage sys-
tems on DM, e.g., databases and key-value (KV) stores [9, 30,
51–53]. They are capable of conducting both point and range
queries. For a practical range index on DM, computing-side
cache consumption [32, 58] and memory-side read and write
amplifications [36, 56] are two critical aspects. First, read and
write amplifications waste network bandwidth between com-
puting and memory pools. As network bandwidth is limited,
range indexes should minimize amplifications to achieve
high throughput [24, 36]. Second, existing approaches cache
part of the index structure and addresses of KV items in the
computing pool to reduce the overhead of remote index tra-
versals [5, 32, 36, 56]. Range indexes should also reduce cache
consumption due to the limited computing-side memory.

Unfortunately, existing approaches cannot simultaneously
achieve both low computing-side cache consumption and
low memory-side read amplifications because there exists a
trade-off between these two aspects, as shown in Figure 1.
Range indexes on DM can be classified into two categories,
i.e., those that store KV items contiguously [32, 56] and dis-
cretely [36]. Discretely storing KV items, e.g., SMART [36],
reduces read amplifications since each KV item is mapped to
a unique memory address and accessed individually. How-
ever, they suffer from high computing-side cache consump-
tion since they need to cache an address for each KV item. In

110

https://doi.org/10.1145/3694715.3695959
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3694715.3695959&domain=pdf&date_stamp=2024-11-15

contrast, storing KV items contiguously, e.g., Sherman [56]
and ROLEX [32], exhibits lower cache consumption since
these approaches introduce an alignment between memory
addresses and keys of KV items, e.g., all KV items in a B+ tree
leaf node are within a specific range of keys. Addresses of
KV items in the cache can thus be compressed with the align-
ment. Nevertheless, these approaches suffer from severe read
amplifications due to the imprecise and coarse-grained align-
ment, e.g., a KV item can appear in all possible addresses
within a B+ tree leaf node. An entire leaf node has to be
fetched to locate a single item. Our experimental analysis
shows that the trade-off degrades the state-of-the-art range
indexes on DM by up to 7.5× under YCSB workloads [12].

In this paper, we propose to use B+ trees with hopscotch-
hashing-based [23] leaf nodes to break the trade-off. This
hybrid index contiguously stores KV items, achieving a low
cache consumption similar to B+ trees. Besides, using hop-
scotch hash tables as leaf nodes can map each KV item to a
precise location, mitigating read amplifications. While our
idea resembles HT-tree [3], i.e., a hardware-dependent con-
ceptual design of combining trees with hash tables, several
challenges still need to be addressed to make such an idea
practical on DM with commodity hardware.

(1) Complicated optimistic synchronization.Data struc-
tures on DM [16, 32, 36, 56] typically employ optimistic syn-
chronization techniques [22], i.e., lock-free reads, to achieve
high concurrency. However, the hybrid index has multiple
read and write granularities. Optimistically coordinating
these accesses is difficult since fine-grained reads cannot
directly perceive coarse-grained concurrent writes.

(2) Extra metadata accesses. The hybrid index needs to
maintain both metadata for B+ trees and hopscotch hashing
to conduct the insert and search operations. Maintaining
these metadata introduces extra remote memory accesses,
resulting in low performance.
(3) Read amplifications of hopscotch hashing. The

space efficiency of the entire hybrid index is a critical aspect
after adopting hash tables as leaf nodes since a leaf node
can not hold more data than the maximum load factor of
the hash table. Hopscotch hashing maps each KV item to
a small range of memory, named neighborhood, to achieve
a high maximum load factor. The larger the neighborhood
size, the higher the maximum load factor. This introduces
additional read amplifications since we still need to fetch all
items within the neighborhood.
To address the above challenges, we design CHIME, a

Cache-efficient and High-performance hybrid Index on dis-
aggregatedMEmory. To achieve efficient optimistic synchro-
nization, we present a three-level optimistic synchronization
scheme to synchronize fine-grained reads and coarse-grained
writes with cache line versions and bitmaps. To reduce the
metadata access overhead, we propose an access-aggregated
metadata management technique to avoid extra metadata
accesses by piggybacking and replicating metadata. Finally,

to mitigate the read amplification of hopscotch hashing, we
adopt an effective hotness-aware speculative read mechanism
to further boost the throughput.

We implement CHIME and evaluate its performance with
the YCSB benchmark [12]. Compared with Sherman [56]
and ROLEX [32], the state-of-the-art B+ tree and learned in-
dex on DM, respectively, CHIME achieves up to 4.3× higher
throughput in read-only workloads and 2.6× higher through-
put in write-intensive workloads, with similar cache con-
sumption. Compared with SMART [36], the state-of-the-art
radix tree on DM, CHIME achieves 5.1× higher throughput
with the same cache size and similar performance with 8.7×
lower cache consumption. The implementation of CHIME
is available at https://github.com/dmemsys/CHIME.

In summary, this paper makes the following contributions:
• We reveal the trade-off between read amplifications and
cache consumption for range indexes on DM, as well as
the superiority of hopscotch hashing on DM, based on
experimental analysis.

• We propose the idea of using a hybrid index combining
the B+ tree with hopscotch hashing to break the trade-off.
We also address the challenges of constructing the hybrid
index on DM with CHIME.

• We show in our experiments that CHIME is a practical
range index on DM. It achieves up to 5.1× higher through-
put than the latest range indexes on DM.

2 Background
2.1 The Disaggregated Memory Architecture
DM is a novel architecture that can potentially address the
resource utilization issues of datacenters [1, 35, 50, 55]. It
physically decouples the computing and memory resources
into two separate pools (i.e., computing and memory pools)
and interconnects them with a fast network. Compute nodes
(CNs) in the computing pool have many powerful CPU cores
to execute intensive tasks but only limited memory serving
as local caches. In contrast, memory nodes (MNs) in the
memory pool have masses of memory to store application
data but only weak computing power for simple tasks, e.g.,
network connection and memory allocation.
CNs and MNs are interconnected via a high-speed CPU-

bypass network, which allows clients on CNs to efficiently
access data in the memory pool without involving weak
CPU cores on MNs. Without loss of generality, this paper
considers that the CNs accessMNs through one-sided remote
direct memory access (RDMA) verbs (e.g., READ, WRITE and
atomic CAS) like previous works [32, 36, 51, 52, 56, 63, 69].
2.2 Range Indexes on Disaggregated Memory
Range indexes are essential for storage systems support-
ing range queries, e.g., databases [42, 45] and key-value
stores [46, 47]. With more and more storage systems ported
to DM [2, 30, 51, 56], constructing a high-performance range
index on DM becomes increasingly important. We focus on
shared indexing scenarios [30, 51–53], where masses of data

111

https://github.com/dmemsys/CHIME

A1 B1

neighborhoods (H=4)

C1 D2 E4

0 1 2 3 4 5

1110 00100000

A1 B1 C1 D2 E4 F5
…

0 1 2 3 4 5 6 7

X1

hopping ①②

…
A1 B1 C1 X1 D2 F5

…E4

…

Inserting a new key X1

hopscotch bitmaps
hop range

Figure 2. A hopscotch hash table with a neighborhood size
of 4. The subscript of each key denotes its home entry.

are stored remotely for all CNs to share access, with only
limited memory on each CN used for caching. In this sce-
nario, there are currently three types of range indexes on
DM, i.e., B + trees, radix trees, and learned indexes.
B+ trees on DM. Sherman [56] is the state-of-the-art B+

tree on DM. It reduces lock-fail retries with shared local lock
tables and mitigates the write amplification of B+ trees by
enabling fine-grained modifications to the leaf node with
two-level versions. Marlin [5] is a write-optimized B+ tree on
DM designed for variable-length values. It enables clients
to operate the same leaf node concurrently via CASes and
prevents conflicts between index structure modifications
and other concurrent accesses with ternary-state node locks.
Despite the write optimizations, Sherman and Marlin suffer
from the inherent read amplifications of B+ trees.
Radix trees on DM. SMART [36] is the state-of-the-art

radix tree on DM that evades the read and write amplifica-
tions of B+ trees. It achieves efficient concurrency control
with a hybrid concurrency control scheme. It also proposes
a read-delegation and write-combining (RDWC) technique,
which coalesces reads and writes on the same keys from the
same CN to alleviate network congestion. However, since
radix trees need to cache the address of each item, SMART
exhibits high cache consumption.

Learned indexes on DM. ROLEX [32] is the state-of-the-
art learned index on DM. It leverages machine-learning mod-
els on each CN as a cache to avoid caching the internal nodes
of tree indexes. It decouples model retraining from one-sided
data modifications by adding a bias and data-movement con-
straints to models. ROLEX also suffers from the read ampli-
fication issue since it needs to fetch several predicted leaf
nodes during each point query.
2.3 Hopscotch Hashing
Hopscotch hashing [23] is a hash collision resolution algo-
rithm for hash tables, as shown in Figure 2. It hashes each key
to an entry in the hash table, i.e., home entry, and stores the
key within a neighborhood from the entry. A neighborhood is
defined as𝐻 consecutive entries, where𝐻 is a pre-configured
neighborhood size. A 𝐻 -bit hopscotch bitmap is embedded
inside each entry to efficiently track the occupancy status of
the neighborhood from this entry. Each bit indicates whether
each key is originally hashed to this entry.

When inserting a key 𝑋 , hopscotch hashing finds the first
empty entry starting from the key’s home entry with linear

probing. If the empty entry is outside the neighborhood, it
searches previous𝐻 −1 items for the farthest one that can be
swapped into the empty entry without violating the neigh-
borhood constraint. The swap (i.e., hop) is conducted and
repeated until the empty entry is within the neighborhood
of the home entry, where 𝑋 can be directly inserted. If no
empty entries or movable items exist, the hash table should
be resized. We define the hop range as the smallest range of
entries that is affected by the entire hopping process.

3 Analysis of Indexes Built on DM
This section motivates the idea (§ 3.1) and presents the chal-
lenges (§ 3.2) of building a hybrid index on DM.
Without explicit mention, all experiments in this section

are conducted with 10 CNs (each with 64 clients) and 1 MN.
Each CN and MN is equipped with a 100 Gbps Mellanox
ConnectX-6 NIC. We use YCSB workloads [12] (including
60 million entries) with 8-byte keys and 8-byte values like
previous studies [5, 32, 36, 56].
3.1 Motivation: Existing Indexes on DM
There are two design requirements for range indexes on DM.
First, one-sided RDMA verbs are preferred on DM to enable
clients to bypass the weak CPUs onMNs. This makes the net-
work a performance bottleneck and requires range indexes
on DM to reduce read amplifications [36]. Second, range
indexes on DM [5, 32, 36, 56] cache part of the index struc-
ture and addresses of KV items on each CN. If the CN cannot
cache the entire index, cache misses will result in multiple
network round-trips on critical paths due to remote index
traversals. Even if computing-side memory can hold the en-
tire index, the valuable local memory should still be saved
as much as possible to support larger datasets or preserved
for other applications or indexes to use. Thus, range indexes
on DM should reduce cache consumption [32]. However,
there is a trade-off between these two requirements.
3.1.1 A trade-off between read amplifications and
cache consumption for range indexes on DM. Range
indexes on DM can be categorized into two types based on
whether the addresses of KV items inside them exhibit con-
tinuity or not: KV-contiguous and KV-discrete range indexes.
KV-contiguous range indexes. B+ trees and learned in-

dexes are KV-contiguous. They store KV items contiguously
within large leaf nodes, which aligns the stored keys with
the memory addresses of KV items. B+ trees and learned
indexes can thus achieve low cache consumption with the
alignment. Specifically, for B+ trees, caching the address of
a leaf node and the range of keys within it enables clients to
access all items in the node without needing to cache their
exact addresses, as the items are stored contiguously. For
learned indexes, we use machine-learning models to capture
the relationship between keys and addresses and use the
model as a cache.
However, B+ trees and learned indexes suffer from high

read amplifications since entire leaf nodes are fetched to CNs

112

(a) The trade-off for range indexes. (b) Performance w/ limited bandwidth. (c) Performance w/ limited caches. (d) The trade-off for hashing schemes.

Figure 3. The comparisons of existing range indexes and hashing schemes on DM.

during point queries. Even worse, for learned indexes, more
than one leaf node needs to be fetched due to the imprecise
model predictions [32, 58]. The read amplification causes
more bandwidth consumption, resulting in low throughput.
KV-discrete range indexes. Radix trees are KV-discrete

since each leaf node holds only one KV item allocated at
discrete addresses. This enables minimal read amplifications
since only one KV item is fetched. However, using radix trees
requires caching addresses of individual KV items, leading
to high cache consumption. This prevents CNs from fully
caching internal nodes, resulting in multiple network round-
trips for traversing the remote index.
Analysis.We define the amplification factor as the theo-

retical ratio of bandwidth consumption from the server and
bandwidth returned to the application. In the following, we
do not consider the amplification caused by metadata, as
its impact is minor [36]. For a radix tree, the amplification
factor is 1 since its leaf node contains only one KV item. For
a B+ tree, the amplification factor is the span size, i.e., the
number of entries in a node, of the leaf node. For a learned
index, following the default settings of ROLEX, we keep the
pre-defined model error equal to the span size. Therefore, the
amplification factor is twice the span size of the leaf node
since the learned index generally needs to fetch two leaf
nodes for each search with the error.

Experiments. Figure 3a shows the trade-off between cache
consumption and read amplification factors for DM range
indexes. For Sherman and ROLEX, the lower the amplifica-
tion factor (span size), the higher the cache consumption.
SMART achieves the minimum read amplification but at the
cost of high cache consumption.
Figures 3b and 3c show the performance comparison of

DM range indexes under the read-only workload with lim-
ited bandwidth and caches, respectively. With 1 MN (i.e.,
limited bandwidth) and 1000 MB caches on each CN, the
peak throughputs of Sherman and ROLEX are 4.9× lower
than SMART since they are bandwidth-bound due to high
read amplifications. With 10 MNs and 100 MB caches (i.e.,
limited caches) on each CN, the throughput of SMART un-
der 480 clients is 5.9× and 3.3× lower than Sherman and
ROLEX, respectively, since the limited caches fail to store all
the internal nodes in SMART, resulting in poor performance.

A straightforward idea. To break the trade-off, a straight-
forward idea is to combine B+ trees with hash-table-based
leaf nodes.1 Ideally, hash-table-based leaf nodes can map
each KV item to a specific address in a leaf node. Clients
only need to fetch a single entry instead of the entire node,
reducing read amplifications and preserving the low cache
consumption of B+ trees. However, using hash tables in-
troduces additional read amplification and space efficiency
issues due to the unavoidable hash collisions.
3.1.2 A trade-off between read amplifications and
space efficiency for hashing schemes on DM. On DM,
both space efficiency and read amplifications matter. A space-
efficient hashing scheme can save the expensive memory
capacity in the memory pool. Meanwhile, a lower read am-
plification enables higher performance. However, existing
hashing approaches suffer from a trade-off between read
amplifications and space efficiency.
The space efficiency for a hash table is determined by

how hash collisions are resolved. Based on whether sepa-
rate data structures are used to handle hash collisions, ex-
isting approaches can be classified into closed-addressing
and open-addressing schemes. Closed-addressing schemes
on DM typically adopt associative buckets to resolve hash
collisions [51, 52, 59, 69]. Each key is hashed to an associative
bucket containing multiple entries. When searching for an
item, a client fetches all entries in a bucket, making the am-
plification factor the size of the bucket. For open-addressing
schemes, collisions are resolved by finding an empty entry
according to some probe sequences [23, 27, 44]. Read am-
plifications are induced since multiple entries are fetched
iteratively [27] or parallelly [23, 44].

This trade-off urges us to widely choose a suitable hashing
scheme that can achieve high space efficiency and low read
amplifications. In our following experiments, we find that
hopscotch hashing best fits our requirements.
Experiments. The space efficiency of hashing schemes

is evaluated by the maximum load factor, i.e., the ratio of
the maximum number of stored items to the total number
of entries in the hash table. We evaluate the maximum load
factors of associativity, hopscotch hashing, RACE [69] and
FaRM [16], with each hash table comprising 128 entries.
1Learned indexes are not considered since imprecise model predictions may
introduce additional memory accesses, which will be verified in Section 5.3.

113

RACE is the state-of-the-art hash table on DM with three
design choices, i.e., associativity, two choices [41], and over-
flow colocation [68]. Its amplification factor is four times the
associative bucket size since each item can be located in four
buckets. FaRM proposes a chained associative hopscotch
hashing. It fixes the neighborhood size to two associative
buckets and chains an overflow block for each bucket. We
disable the chained block design since it is unfriendly to DM.
The amplification factor of FaRM is thus twice the associative
bucket size. Other RDMA-based hashing schemes [39, 59]
are not considered since they are unsuitable for DM [69].

Figure 3d shows the trade-off between the maximum load
factor and the read amplification factor for the hashing
schemes. The hopscotch hashing achieves the best space
efficiency with low amplification factors.
A viable idea. Based on the above analysis, we propose

to break the trade-off between cache consumption and read
amplifications by using a B+ treewith hopscotch-hashing-
based leaf nodes, i.e., hopscotch tree. The characteristic of
the B+ tree helps achieve comparable cache consumption to
large-span B+ trees, while hopscotch hashing reduces read
amplifications with high space efficiency.
3.2 Challenges: The Hybrid Index on DM
The hopscotch tree retains the internal node structure of
a B+ tree but replaces its leaf nodes with hopscotch hash
tables, i.e., hopscotch leaf nodes. For read operations, it first
traverses the internal nodes like a B+ tree to find the hop-
scotch leaf node containing the target KV item. It then reads
the neighborhood encompassing the item from the leaf node.
For write operations, it locates the target leaf node in the
same way, and then either directly updates the KV item or
inserts a new one via a hopping process, as introduced in
Section 2.3. If there is no feasible hopping, a node split and
up-propagation are performed, similar to a B+ tree, to cre-
ate new space in the hopscotch leaf node. Even though the
hopscotch tree can meet both requirements of reducing read
amplifications and cache consumption, three challenges still
have to be overcome before it becomes a practical approach.
3.2.1 Complicated optimistic synchronization. The
optimistic synchronization is preferred by DM since it allows
lock-free READs [22]. However, achieving it on a hopscotch
tree is challenging due to various granularities in READs and
WRITEs, including reading a neighborhood (i.e., neighborhood
read), updating an entry (i.e., entry write), writing a hop
range to insert an item (i.e., hop range write), and writing an
entire node during a node split (i.e., node write).
Specifically, optimistic synchronizations use verification

information, e.g., versions [16, 40, 56] and checksums [36, 39],
to enable readers to identify conflicting write operations. For
version-based approaches, version numbers are spread across
the entire write region and updated altogether during each
WRITE. For checksum-based approaches, a checksum in each
write region is re-calculated and updated during each WRITE.

(a) Vacancy bitmap. (b) Leaf metadata. (c) Neighborhood.

Figure 4. The effects of metadata accesses and the neighbor-
hood size. "Vacancy", "Leaf Meta" represent reading: 1) the
vacancy bitmap before the hop range (2 accesses), and 2) the
leaf metadata and the neighborhood (2 accesses).

Both approaches require readers to fetch the entire write
region to check if there are concurrent write operations. This
introduces two problems to the hopscotch tree:
1) The verification information for coarse-grained

writes is invisible to fine-grained reads. This is because a
fine-grained read region cannot encompass the entire write
region (i.e., an entire node or a hop range), making the veri-
fication information unavailable to reads.
2) The verification information for the hop range

writes is difficult tomaintain.Hop ranges vary in size and
overlap with each other in leaf nodes, which makes existing
version-based or checksum-based approaches infeasible.
3.2.2 Extra metadata accesses. The hopscotch tree has to
maintain the metadata for both the hopscotch hashing and
the B+ tree, which introduces extra remote memory accesses
on DM, decreasing the overall performance.
For insert operations on hopscotch hashing, to minimize

read amplifications, only a hop range should be fetched on
data accesses instead of an entire leaf node. To achieve this, a
vacancy bitmap, where each bit represents the empty status
of each entry, should be maintained for each leaf node to
enable clients to identify the hop range before they probe the
hash entries. This inevitably introduces extra remote mem-
ory accesses on the critical paths of insert operations to read
and write the vacancy bitmap. We evaluate the overhead
of maintaining the vacancy bitmap in Figure 4a by contin-
uously issuing READs. Compared with the ideal case where
only the hop range needs to be fetched, the extra access of
the vacancy bitmap decreases the throughput by up to 1.8×.

For the B+ tree, leaf metadata, e.g., fence keys and sibling
pointers, are maintained in the header of each leaf node for
clients to validate the correctness of reads [19, 31]. Thus, the
leaf metadata should be fetched during each query. However,
as the neighborhood to read in the hopscotch leaf node is
usually not adjacent to the in-header leaf metadata, clients
have to either read the metadata via dedicated accesses or
read the entire node. Figure 4b shows the impact of the extra
leaf metadata access. With 8-byte keys and 8-byte values,
the extra access brings a 1.8× reduction in throughput.
3.2.3 Read amplifications of hopscotch hashing. Hop-
scotch hashing can reduce the read amplification from the

114

…

MNs
CNs

Three-Level Optimistic Synchronization (§ 4.1)
child pointer
sibling pointer

B+ tree internal node
hopscotch leaf node

…hotspot buffertree cache

…clients …clients

Search / Insert / Update / Delete / Scan (§ 4.4)

Access-Aggregated Metadata Management (§ 4.2)

tree cachehotspot buffer

Hotness-Aware Speculative Read (§ 4.3)

Figure 5. The overview of CHIME.

size of a leaf node to the size of a neighborhood. However, the
neighborhood should still be configured more than a thresh-
old (e.g., 8 entries) to ensure an acceptable maximum load
factor (e.g., ≈ 90%), as shown in Figure 3d. This still incurs
read amplifications compared with the optimal case where
only a single KV item is read. We evaluate the performance
decline caused by the read amplifications of hopscotch hash-
ing by continuously issuing READs to the MN. As shown
in Figure 4c, reading 8-entry neighborhoods shows at least
1.3× lower throughput than the optimal case, i.e., the 1-entry
neighborhood. This is because the network bandwidth is
the bottleneck when reading 8-entry neighborhoods. With
the same key sizes, 8-entry neighborhoods consume more
bandwidth than 1-entry ones, resulting in lower through-
put. Note that the IOPS upper bound of memory-side RDMA
NICs becomes the new bottleneck when the data blocks are
small enough [36]. Thus, reading 1-entry neighborhoods
(IOPS-bound) cannot achieve an 8× throughput of reading
8-entry neighborhoods (bandwidth-bound).

4 The CHIME Design
We propose CHIME, a cache-efficient and high-performance
range index for DM. Figure 5 shows the overview. To achieve
better concurrency, we present a three-level optimistic syn-
chronization scheme, including a two-level versioning and
a bitmap check to detect B+-tree-related writes and entries
hopping, respectively (§ 4.1). To avoid extra metadata ac-
cesses, we propose an access-aggregated metadata manage-
ment technique to eliminate the accesses by piggybacking
and replicating metadata (§ 4.2). To reduce read amplifica-
tions of hopscotch hashing, we adopt a hotness-aware specu-
lative read mechanism to boost the throughput further (§ 4.3).
Finally, we summarize operations CHIME supports (§ 4.4).
4.1 Three-Level Optimistic Synchronization
CHIME adopts B+-tree-like internal nodes for low cache
consumption and hopscotch leaf nodes to reduce read am-
plifications with high space efficiency.
As shown in Figure 6, both internal and leaf nodes of

CHIME consist of a header, an array of entries, and an 8-byte

lock. In the header, a level byte is used to indicate the level of
the node. Nodes closer to the root have higher level values.
Leaf nodes are at level 0, and their parent nodes are at level
1, and so on. When the root node R is split, its level, i.e.,
level(R), remains unchanged, and the new root node’s level
is assigned to level(R)+1. A valid byte is used to indicate the
deleted state. Fence keys [19] are the lower and upper bounds
of keys in the node. Each node points to a sibling node via an
8-byte sibling pointer like a B-link tree [31]. Fence keys and
sibling pointers are used to ensure the correctness of reads
during node splits, which will be discussed in Section 4.2.2.
Each internal node entry stores a pivot key to guide the
search direction and an 8-byte child pointer pointing to a
subsequent node to traverse. Each leaf node entry stores a
KV item. A 2-byte hopscotch bitmap is used to support a
maximum neighborhood size of 16.
CHIME adopts lock-based writes and lock-free reads on

each node. For write-write conflicts, the lock in each node
is used to synchronize writes. For read-write conflicts, the
verification information (e.g., NV and EV) ahead of each
node and entry is used to synchronize reads with a write.
As mentioned in Section 3.2.1, detecting read-write con-

flicts on leaf nodes is challenging since fine-grained reads
cannot perceive coarse-grained writes, i.e., node and hop
range writes. We decompose the problem into detecting
node and hop range writes and address them with two-level
cache line versions and reused hopscotch bitmaps, respectively,
which form the three-level optimistic synchronization.NV and
EV are two levels, and the hopscotch bitmap is the third level.

4.1.1 Two-level cache line versions. Cache line ver-
sioning is a widely adopted technique to resolve read-write
conflicts among one-sided RDMA operations [16, 17, 66]. It
places a version number at the start of each cache line and
object. Concurrent modifications can be detected by check-
ing whether versions within a fetched object are the same.
Such a scheme also works when partially reading an object.
However, directly applying cache line versions to tree nodes
forces clients to update all versions and write back the en-
tire node whenever a single entry is modified, resulting in
severe write amplifications. The root cause is that all entries
inside a node share the same cache line versions with the
node. To address this, we design two-level cache line versions
that decouple the versions of nodes and entries to achieve
fine-grained writes.
As shown in Figure 7a, we embed each cache line, node,

and entry with a 1-byte two-level version field, each storing
a 4-bit node-level version (NV) and a 4-bit entry-level version
(EV). When clients write a node, they increment all the node-
level versions within the node (including those at the start of
entries). When clients update an entry, they increment the
entry-level versions within the entry and only write back the
modified entry, eliminating the write amplification. When
clients read part of a node, e.g., a neighborhood, they retry

115

Header Entry Entry Entry …

NVobj level valid fence keys sibling pointer child pointer

EVobjNVobj pivot key child pointer

1B 1B 8B 8B

4 bit 4 bit 8B

Internal Node:

4 bit

Lock
8B

(a) The internal node.

Header

NVobj level valid fence keys sibling pointer

EVobjNVobj key Value

1B 1B 8B

4 bit 4 bit

4 bit

hopscotch bitmap
2B

Leaf Node (Unoptimized):
Entry Entry Entry Entry

neighborhood

…… Lock
8B

(b) The leaf node (Unoptimized).

Figure 6. The node structures of CHIME. "NV " and "EV " represent node-level and entry-level versions, respectively. For
brevity, the cache line versions are omitted. The optimized leaf node structure will be introduced in Section 4.2.

Node:

Cache Line

NVobj

EVobjNVobj

EVc1NVc1 EVc2NVc2

EVc2NVc2Entry:

① Check Partial Node: NVobj = NVc* ?
② Check Each Entry: EVobj = EVc* ?

read

4 bit 4 bit 4 bit 4 bit4 bit 4 bit

4 bit 4 bit

(a) Two-level cache line versions for detecting node and entry writes.

B1 C1 D2 E4 F5

2 3 4 5 6 7

hoppingX1
0010

B1 C1 X1 D2 F5

0001

4 5
Status(keys)Read Keys

neighborhood read

Hop Range:

A1

1

A1

D2 E4 0010C1B1

D2 D2 0011C1B1

X1 E4 0000C1B1

X1 D2 0001C1B1

2 3

E4

③ Check: Fetched bitmap = Status(keys)?

(b) Reused hopscotch bitmaps for detecting hop range writes.

Figure 7. The three-level optimistic synchronization.

their read operations when they find that 1) the fetched node-
level versions cannot match, or 2) for any entry they fetched,
the entry-level versions within the entry cannot match.

We use the same 4-bit version as in Sherman [56], which is
sufficient to handle read-write conflicts. This is because write
operations on each node are synchronized by the lock. There
will be only one write operation and multiple concurrent
read operations on the version number at the same time.

4.1.2 Reused hopscotch bitmaps. The above versioning
cannot detect concurrent hop range writes since the over-
lapping and variable sizes of hop ranges make versions hard
to maintain. Figure 7b shows an example of a hop range.
Keys 𝐸 and 𝐷 are hopping from entries 5 and 4 to 7 and
5. The hopscotch bitmap inside the home entry of 𝐷 (i.e.,
entry 2) is updated from 0010 to 0001 since 𝐷 is moved from
the third entry from its home entry to the fourth. The hop
range with updated bitmaps is written back to the MN via
a WRITE. Concurrent reads may fetch intermediate states of
the write, resulting in an incorrect search. We define entries
storing hopped keys as hop entries. As modifications to KV
items within a hop range reside in hop entries, the hop range
check can be decomposed into intra-entry and inter-entry
checks. The former is solved by the entry-level versions pro-
posed above. Thus, we only need to consider the latter, i.e.,
detecting the location changes of hopped items.

To address this issue, we find that hopscotch hashing guar-
antees that the home entry of a new key in a hop entry
always differs from that of the original key, or the hop
entry is originally empty. This is because the hopscotch
algorithm prioritizes swapping with a farther entry during
each hop, as stated in Section 2.3. For example, the hop en-
tries in Figure 7b are 4, 5, and 7. For entry 5, the home entry
of𝐷 differs from that of 𝐸 since𝐷 can otherwise directly hop

to entry 7. For entry 4, the home entry of 𝑋 differs from that
of 𝐷 since 𝑋 can otherwise directly hop to entry 5. Based
on this observation, we come up with reusing the hopscotch
bitmaps to indicate the locations of hopped items.
The right part of Figure 7b shows all possible locations

of keys fetched by a neighborhood read from entry 2. After
fetching a neighborhood, readers re-construct a hopscotch
bitmap of the target home entry, i.e., status(keys), according
to the hash values of actual keys in the fetched neighbor-
hood. Readers then compare the status(keys)with the fetched
hopscotch bitmap in the home entry of the target key and
re-read if the two bitmaps do not match. This enables clients
to detect whether they read an intermediate state of the
neighborhood, i.e., the middle two rows in the right part of
Figure 7b, where some KV items are unavailable.
4.2 Access-Aggregated Metadata Management
As described in Section 3.2.2, maintaining the vacancy bitmap
and leaf metadata introduces expensive extra remote mem-
ory accesses on the operation’s critical path. CHIME pro-
poses an access-aggregatedmetadatamanagement technique
to eliminate these accesses. In this section, we first introduce
how we avoid the extra accesses to the vacancy bitmap and
leaf metadata. We then present a sibling-based validation
mechanism to further mitigate the metadata overhead.
4.2.1 Vacancy bitmappiggybacking. The vacancy bitmap
indicates the locations of empty entries in a node, which is
used to avoid read amplifications during insertions. Before
inserting a new key, the client first acquires the lock of the
target node via a CAS. After acquiring the lock successfully,
the client READs the corresponding vacancy bitmap to iden-
tify the expected hop range. The client then READs the range
without read amplifications rather than fetching the entire
node. However, reading the vacancy bitmap introduces an

116

client

metadata H Entries

Entr ies

metadata + neighborhood

H Entries

Metadata Replication

Entries Lock
8B

client

vacancy map lock
1 bit

Metadata Piggybacking
① masked-CAS

metadata + lock

② READ hop range
READ neighborhood

Figure 8. The access-aggregated metadata management.

extra remote memory access, which increases the latency
and limits the throughput of the entire insert operation.

To address this issue, we find that we can leverage the un-
used bits in the lock to represent the vacancy bitmap. Specif-
ically, we only need 1 bit to represent the lock state but have
to construct locks with 8 bytes as required by RDMA atomic
operations. Based on this observation, we piggyback the
vacancy bitmap read onto the lock acquirement to elim-
inate the extra access. We achieve this with the masked com-
pare and swap (masked-CAS), an advanced feature of RDMA,
which is available on ConnectX-2 NICs and above [14, 15].
Masked-CAS enables a client to restrict the compare check
and the swap to two portions of the 8-byte region, respec-
tively. Two bitmasks (i.e., compare_mask and swap_mask)
indicate the two portions, where the masked-out bits will
not get compared or swapped.

As shown in the left half of Figure 8, we embed the vacancy
bitmap into the 8-byte Lock field, where only the last bit
serves as a lock. The client issues a masked-CAS at the Lock
field to acquire the lock, with a compare_mask value of 0x1
and a swap_mask value of MAX_UINT64. The compare_mask
enables the client to acquire the lock without involving the
vacancy bitmap. The swap_mask enables swapping the entire
Lock field (including the vacancy bitmap) back to the client.
In this way, the client gets the vacancy bitmap during lock
acquirement with no extra access. Besides, the empty status
of entries in a node only changes during insertion or deletion
when the node is locked. Thus, any modifications to the
vacancy bitmap can be piggybacked onto the lock releasing
via a WRITE. As both reads and writes on the vacancy bitmap
are piggybacked onto lock operations, the vacancy bitmap
accesses are completely eliminated.
Note that the maximum size of the vacancy bitmap is 63

bits within the 8-byte Lock field. If the span size of the leaf
node is larger than the vacancy bitmap size, we map each
bit to several entries as evenly as possible.
4.2.2 Leaf metadata replication. CHIME adopts the same
node split process as Sherman [56], moving KV items to
a newly allocated sibling node on the right. Specifically,
CHIME allocates a 16 MB memory chunk to each client
via a remote procedure call (RPC) each time. When creat-
ing a new node, the client uses space from the pre-allocated
chunk. If the space is exhausted, a new chunk is allocated
via RPC. After allocating space for the new node, the client
copies the items to be moved into the new node via a WRITE.

After the new node is written back, the client deletes the
moved items in the old node, sets the sibling pointer to the
new node’s address, and unlocks the old node via a single
WRITE. Writing the new node before the old node ensures
that the new node will not be accessed until the old node
points to it. Thus, concurrent conflicts between READs and
WRITEs only occur on the old node, which can be managed
well by the three-level optimistic synchronization. However,
read operations may miss some moved KV items due to the
node split process.

Existing approaches use fence keys to ensure the correct-
ness of reads during node splits [19, 31, 56]. Specifically, two
validations should be conducted after reading a node, i.e.,
cache validations and half-split validations. The first is the
cache validation. CHIME caches internal nodes on each CN.
The cached nodes may be outdated due to node splits of the
remote tree triggered by other CNs. To detect the cache inval-
idation, the client checks whether fence keys are consistent
with the cached pivot keys. If not, the cached node will be
invalidated. The second is the half-split validation. Although
reads and node writes are well synchronized, a read may
miss a key due to a half-split [60], where a node is split into
two nodes with data moved, but the parent node update is
pending. To detect it, a client checks whether the target key
is within the range indicated by fence keys. If not, the client
continues to READ the sibling node, where the target key has
been moved to.

Everything performs well until the introduction of neigh-
borhood reads for leaf nodes. The client has to read the
neighborhood and the leaf metadata with two dedicated
READs since the neighborhood is usually not adjacent to the
in-header metadata. To avoid this, we replicate the meta-
data across the leaf node to make it available to every
neighborhood, as shown in the right of Figure 8. We insert a
metadata replica at the position of every 𝐻 entries, where 𝐻
is the neighborhood size. For any neighborhood on the node,
there is a replica that is either encompassed by it or adjacent
to it. Thus, the leaf metadata can be fetched along with the
neighborhood via a READ. Besides, since the leaf metadata is
only changed during a node split or merge, all the replicas
can be updated and written back along with the node write
without introducing inconsistencies.

4.2.3 Sibling-based validation. Replicating fence keys to
conduct validations introduces additional memory overhead,
i.e., an additional 2·𝑘𝑒𝑦_𝑠𝑖𝑧𝑒

𝐻
bytes for each entry. To achieve

better memory efficiency, we propose a sibling-based valida-
tion to achieve cache and half-split validations by reusing
the sibling pointers in leaf nodes, as shown in Figure 9:

1) Cache validation. If a client reads a remote leaf node
according to a cached pointer, it checks whether the sibling
pointer in the leaf node equals the next child pointer in
the cached parent node. If not, a mismatch is found, which
indicates that a newly inserted sibling node (i.e., 𝑙𝑒𝑎𝑓𝐴′) is

117

MNs
CNs

Cache Validation

leafA

Remote Internal Node:
key A key B key C… …

A’ leafA’ B ……leafA

Cached Internal Node:
key A key B key C… …

A’ leafA’ B ……

leafA has split leafA is spliting

Half-Split Validation

check: sibling pointer=B? check: sibling pointer=B?
READREAD READ

Figure 9. The sibling-based validation. For clarity, the ad-
dress of leaf node 𝑙𝑒𝑎𝑓𝑥 is 𝑥 , where 𝑥 = 𝐴,𝐴′, 𝐵.

NVobj valid sibling pointer
1B 8B4 bit

Meta. H Entries …Meta. H Entries Meta. H Entries Lock
8B

…Entry Entry

Leaf Node (Optimized):
vacancy map argmaxkeys lock

6 bit 1 bit57 bit

neighborhood

10B

Figure 10. The optimized leaf node structure of CHIME.

invisible to the client due to the outdated cached node. The
client then invalidates the cached node and retries the search.
2) Half-split validation. If a client reads a remote leaf

node according to a remote pointer, it conducts the same
sibling pointer checks. If the target key is not found in the
leaf node and the sibling pointer is mismatched, it indicates
that the target key may be moved to sibling nodes. The client
then READs the sibling node. The process is repeated until
the target key is found or the sibling pointer is matched.
A corner case happens when a half-split is found during

an insertion. A client cannot determine whether to insert
the new key into the split node (i.e., 𝑙𝑒𝑎𝑓𝐴) or the sibling
node (i.e., 𝑙𝑒𝑎𝑓𝐴′), since the sibling pointer does not include
the pivot key of the two nodes as fence keys do. To address
this, we embed a 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑒𝑦𝑠 field inside the Lock field to
indicate the position of the maximum key in the node and
maintain it similarly to the vacancy bitmap. The client can
READ the maximum key of the split node according to the
𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑒𝑦𝑠 value and then determine which node to insert
into. Figure 10 shows the final optimized leaf node structure
with metadata refined. Apart from the fence keys, the level
byte is removed since it is always zero for leaf nodes.
4.3 Hotness-Aware Speculative Read
CHIME adopts a hotness-aware speculative read scheme
to reduce amplifications of reading neighborhoods. We use
a hotspot buffer to store the locations of some entries and
shortcut the index search when the target is in the buffer.

The hotspot buffer. We define hotspots as the frequently
accessed entries in leaf nodes. A hotspot buffer on each CN
is a small cache that stores descriptions of the hotspots. As
shown in Figure 11, each buffer entry stores an 8-byte leaf
address, a 2-byte key index, a 2-byte fingerprint and a 4-byte
counter. A key index is the position of a hotspot in a leaf
node. The pair of leaf address and key index can uniquely
determine a hotspot. The fingerprint of the key in the hotspot
is stored in the buffer to reduce the probability of incorrect
speculations. We limit the size of the hotspot buffer to avoid

leaf address key index fingerprint counter
8B 2B 2B 4B

Buffer Entry:

MNs
CNs

Entry… …Entry Entry Entry

neighborhood

Hotspot

Leaf Node:

speculative READ

Meta.

Figure 11. The hotness-aware speculative read.

high cache consumption. The counter is used to track how
frequently the hotspot is accessed.

Whenever CHIME accesses a remote KV entry, it updates
the hotspot buffer. Specifically, if the entry is already in the
buffer (i.e., it is a hotspot), CHIME checks if the fingerprint
matches the key just read. If it does not match, it indicates
that the buffer entry is outdated. In this case, update the
fingerprint and reset the counter to 1. Otherwise, increment
the counter to track the hotspot’s frequency. If the entry is
not in the buffer, insert its description. If the buffer is full, a
buffer entry is evicted using the least frequently used (LFU)
replacement strategy.
Speculative reads. The speculative read is a mechanism

to greedily fetch the target entry rather than reading the
neighborhood, aiming at reducing read amplifications fur-
ther. It relies on the hotspot buffer to record the precise
locations of hot entries for the speculation. Before conduct-
ing a neighborhood read for a key, the client first searches
the buffer for hotspots within the neighborhood. The finger-
print is checked to exclude incorrect locations for the target
key. If no matched hotspot is found, a normal neighborhood
read is conducted. Otherwise, the client selects the hottest
one by comparing counters and then speculatively READs
the selected hotspot. If the target key is found in the entry,
the speculative read succeeds, and the read amplification of
hopscotch hashing is avoided. Otherwise, the neighborhood
should be READ.
4.4 Operations
Put all designs together. We assume there are h layers of
internal nodes. The number of round-trips for each operation
is shown in Table 1, where for brevity, we do not count the
round-trips caused by lock-fail retries, cache or half-split
invalidations, and node splits or merges. In the best case, all
internal nodes are cached on the CN. In the worst case, the
internal nodes are not cached on the CN.

Operations on CHIME are described as follows. All opera-
tions first search the cache. A remote traversal starts from the
deepest cached child pointer. A client can identify whether
the child node is a leaf or an internal node according to the
level of its parent node.

Search. If the child node is an internal node, the client di-
rectly READs it. Two-level cache line versions and fence keys
are checked to detect concurrent writes and node splits. The
client locates the next child pointer according to pivot keys.
The process is repeated until the child node is a leaf node
(0-h RTTs). The client determines the neighborhood to read

118

Table 1. Numbers of round-trips for each operation.

Search Insert Update/Delete Scan
Best 1 or 2 3 3 or 4 1
Worse h+1 or h+2 h+3 h+3 or h+4 h+1

by hashing the target key. A speculative READ is conducted
if a matched hotspot is found in the buffer. Otherwise, the
client READs the neighborhood (1 RTT). In the case of incor-
rect speculation, which occurs infrequently, an additional
neighborhood READ is required (1 RTT). For a wrap-around
corner case, where the set of entries to probe (e.g., a neigh-
borhood) goes past the end of the hash table and continues
from the beginning, the client READs the two segments with
doorbell batching [24]. Two-level cache line versions, hop-
scotch bitmaps and sibling pointers are checked to detect
concurrent writes, entries hopping and node splits, respec-
tively. If the checks pass, search the neighborhood for the
target key and return.
Insert. The client first identifies the leaf node like the

search (0-h RTTs). Then, it locks the leaf node and gets the
vacancy bitmap via a masked-CAS (1 RTT). After READing
the hop range according to the vacancy bitmap (1 RTT), it
inserts the new key into the fetched range via a hopping:
• If the hopping succeeds, increment the entry-level ver-
sions within each hop entry, WRITE the hop range back,
unlock the node via another WRITE, and return (1 RTT,
with the two WRITEs combined like Sherman [56]). If the
hop range wraps around the leaf node, the client WRITEs
the segments with doorbell batching.

• If the hopping fails, the client READs the rest of the node
and conducts a node split. For leaf nodes, the split key
is the median among the keys to hop during the failed
hopping. This ensures a successful key insertion into the
split or new node. The client moves items with keys larger
than the split key to the new node’s corresponding entries,
updates hopscotch bitmaps, and WRITEs the new node to a
newly allocated address. It then WRITEs back the old node,
with the sibling pointer pointing to the new node, the
vacancy bitmap updated, and the lock released.
After the node split, an up-propagation process is required

to insert the split key and the new leaf address into the
upper part of the tree. CHIME follows the same process as
Sherman [56]. Let nodes A, A’ and P denote the split node,
the new node, and the parent node of node A, respectively:
• (Step 1) If node A is not the root node, execute Step 2;
otherwise, execute Step 3.

• (Step 2) Lock node P, fetch it, and insert a new entry (i.e.,
the split key and the address of A’) into it. If node P is not
full, write it back, unlock it, and return. Otherwise, split
and unlock it. Let A=P and go back to Step 1.

• (Step 3) Allocate a new root node that points to nodes A
and A’. Update a global pointer via CAS, which maintains
the latest root address, and return.

Update. A client identifies (0-h RTTs) and locks (1 RTT)
the leaf node like the insert and then gets the target entry like
the search (1-2 RTTs). It modifies the entry and increments
entry-level versions within it. Lastly, it WRITEs the entry back
and unlocks the node via another WRITE (1 RTT, where the
two WRITEs are also combined like the insert).

Delete. In case of no leaf node merging, a delete operation
only needs to clear the target entry via the update process.
Otherwise, a node merge is triggered like DMB+ trees [5, 56],
where node-level versions are used to detect inconsistencies.

Scan. We conduct a scan like Sherman [56], where the
client fetches target internal nodes (0-h RTTs) and leaf nodes
(1 RTT) via parallel READs, respectively. Besides, to reduce
read amplifications, we analyze neighborhood intersections
of target keys and exclude unnecessary entries for each read.

4.5 Discussions

Supporting variable-length keys and values. By default,
CHIME stores KV items in leaf nodes. To support variable-
length values, CHIME stores a key and an 8-byte pointer in
each leaf entry like previous works [5, 26, 32, 40, 58]. The
remaining item content is stored in a block linked by the
pointer. To further support variable-length keys, CHIME
adopts a similar approach to PACTree [26]. The first 8 bytes
of the key, used as a fingerprint, are stored in the leaf nodes,
while the rest of the key and value are stored in the block
linked by the pointer. The block needs to maintain infor-
mation such as key length and value length. In the case
of fingerprint collisions, CHIME simultaneously fetches all
linked blocks that match the partial key. Since fingerprint
collisions are rare, this overhead is acceptable. We will eval-
uate the performance of CHIME with variable-length KV
items supported in Section 5.2.
The first one-sided RDMA-based hopscotch hashing. A
hopscotch hash table based on one-sided RDMA can be
formed with the three-level optimistic synchronization, where
node-level versions can synchronize reads with the table
resizing. To the best of our knowledge, this is the first hop-
scotch hash table that can be optimistically synchronized
using only one-sided RDMA verbs.
Generality of techniques in CHIME. Some techniques in
CHIME can also be applied to other kinds of indexes: 1) The
hopscotch leaf node can benefit any KV-contiguous range in-
dex (e.g., learned indexes) to mitigate the read amplification.
2) The vacancy bitmap piggybacking technique can piggy-
back any other small-sized metadata in lock-based structures,
saving one RTT. 3) The sibling-based validation mechanism
is applicable to all B+ trees to save metadata overhead.
Write amplifications in CHIME. For update operations,
write amplifications are majorly caused by the versions. A
1-byte cache line version is embedded in every 63-byte data,
and a 1-byte object version is embedded in every entry. Thus,
for a 256-byte KV item, which is typical in real-world work-
loads [62], the size of versions is 1 + 𝐾𝑉 _𝑠𝑖𝑧𝑒

63 = 5.1 bytes,

119

which causes only a 1.02× write amplification. For insert
operations, write amplifications result from the node and
hop range writes. The former occurs infrequently. For the
latter, the probability of hop ranges with sizes larger than 𝐻

is not higher than 𝛼𝐻 [13, 23], where 𝛼 is the load factor of
the hopscotch leaf node.
Remote memory consumption in CHIME. The consump-
tion is determined by the KV data, metadata, and hash table
load factor. Consider the hopscotch leaf nodes:
• Consumption caused by KV data. This is the same as that
of other indexes under the same workloads.

• Consumption caused by metadata. Some techniques in
CHIME introduce additional metadata overhead: 1) The
hopscotch leaf node requires each entry to embed a 2-byte
hopscotch bitmap. 2) The two-level cache line versioning
adds 1 + 𝐾𝑉 _𝑠𝑖𝑧𝑒

63 bytes of version data per entry. 3) The
metadata replication embeds a 10-byte metadata replica
to every 𝐻 entries. With 256-byte KV items, the metadata
overhead for each item is 3 + 𝐾𝑉 _𝑠𝑖𝑧𝑒

63 + 10
𝐻

= 8.3 bytes,
consuming only 3% of the memory used by the KV data.

• Consumption caused by load factor. As shown in Figure 3d,
hopscotch hashing can achieve an acceptable maximum
load factor of around 90% with a low amplification factor.
This results in CHIME having a 1.1x higher memory con-
sumption than other indexes. CHIME could consider nar-
rowing this gap by increasing the neighborhood size. With
a neighborhood size of 16, CHIME can reach a maximum
load factor of 99.8%, which will be shown in Section 5.4.

Applicability of CHIME to large-scale datasets. CHIME
can do well across different dataset sizes. As for cache con-
sumption, the impact of dataset size is linear. The cache con-
sumption of CHIME is close to large-span B+ trees. As for
performance, the dataset size affects the tree height, which is
⌈𝑙𝑜𝑔𝑠𝑝𝑎𝑛_𝑠𝑖𝑧𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑠𝑖𝑧𝑒𝑙𝑜𝑎𝑑_𝑓 𝑎𝑐𝑡𝑜𝑟 ⌉ for CHIME. With a span size of 64
and a maximum load factor of 99.8%, the tree height remains
not higher than 5 even as the dataset size grows to 1 billion.
Compatibility of CHIME to CXL. The design of CHIME
should be adjusted when adopting CXL but the change is not
significant. The vacancy bitmap piggybacking technique will
no longer be applicable, as the mask-CAS is only specified
by RDMA. Instead, CHIME should use the regular atomic
command supported by CXL 3.0 [11]. This will decrease the
performance under insert workloads since dedicatedmemory
assesses are required to read and write the vacancy bitmap.
In general, other designs remain feasible under CXL, as they
do not rely on specialized operations restricted to RDMA.

5 Evaluation
5.1 Experimental Setup
Testbed. We conduct all experiments on 10 physical ma-
chines (10 CNs and 1 MN) on CloudLab [18].2 Each machine

2Like previous works [36, 56], we make one machine act as both CN and
MN to save machines.

has two 36-core Intel Xeon CPUs, 256 GB of DRAM, and
one 100 Gbps Mellanox ConnectX-6 NIC. All machines are
connected to a 100 Gbps Ethernet switch. Each CN contains
4 GB DRAM and 64 CPU cores, where each core can serve
as a client. Each MN holds 64 GB DRAM and 1 CPU core.
Workloads. Unless stated otherwise, we evaluate CHIME
with YCSB workloads [12] with 8-byte keys and 8-byte val-
ues, following previous works [5, 32, 36, 56]. We use 6 core
workloads: A (50% search, 50% update), B (95% search, 5%
update), C (100% search), D (latest-read, 95% search, 5% in-
sert), E (95% scan with each accessing up to 100 items, 5%
insert), and an additional LOAD (100% insert) workload. All
workloads are generated with the default Zipfian distribu-
tion except for YCSB LOAD and D. For each workload, we
populate 60 million KV items before conducting 60 million
operations, except for the LOAD test.
Comparisons.We compare CHIME to three state-of-the-art
DM range indexes: SMART [36] (radix tree), Sherman [56]
(B+ tree), and ROLEX [32] (learned index). We enhance Sher-
man with two-level cache line versions since its original
bookend versioning is incorrect [66]. We implement ROLEX
with its open-source models.3 We also evaluate SMART-Opt,
a version of SMART with sufficient caches, to represent the
performance upper bound with almost no read or write am-
plifications. Besides, we extend each range index to support
variable-length items: CHIME-Indirect, SMART-RCU [36],
Marlin [5], and ROLEX-Indirect [32]. For fairness, RDWC
and coroutines are applied to all competitors.
Parameters.Without explicit mention, we use all the default
configurations of all baselines (e.g., a span size of 64 for
Sherman and Marlin, a span size of 16 and a model error
of 16 for ROLEX). For CHIME, we use a span size of 64, a
neighborhood size of 8, and a hotspot buffer size of 30 MB.
Except for the SMART-Opt test, we limit the cache size on
each CN to 100 MB, shared by all clients on the CN.
5.2 Performance Comparison
Figure 12 presents the throughput-latency curves of the four
DM range indexes under YCSB workloads.

The search-onlyworkload (YCSBC). For YCSBC,CHIME
outperforms Sherman and ROLEX by 4.3× in throughput
since the hopscotch leaf node mitigates read amplifications.
Although ROLEX has a lower theoretical amplification factor
(i.e., 32) than Sherman (i.e., 64), its throughput is as low as
Sherman’s. This is because ROLEX stores overflow items of
each leaf node in an additional one and must fetch both leaf
nodes in each search operation.CHIME outperforms SMART
by 5.1× in throughput and achieves 2.8× lower P99 latency
since SMART fails to cache all internal nodes, resulting in
expensive remote tree traversals.
Insert workloads (YCSB LOAD, D). For YCSB LOAD,

CHIME outperforms Sherman by 1.6× in throughput since

3For simplicity, we pre-train all KV items for ROLEX to avoid the model
retraining. Thus, we do not evaluate ROLEX with YCSB LOAD.

120

(a) YCSB LOAD (b) YCSB A (c) YCSB B (d) YCSB C (e) YCSB D (f) YCSB E

Figure 12. The performance comparison of range indexes on DM.

Figure 13. The performance comparison of range indexes
on DM with variable-length KV items supported.

the vacancy bitmap enables reading a hop range rather than
the leaf node.CHIME outperforms SMART by 1.2× in through-
put and 1.5× in P99 latency since it caches KV items more
efficiently. CHIME shows higher P99 latency than SMART-
Opt since node splits occur recursively under the 100% insert.

For YCSB D, CHIME achieves 4.2×, 5.3×, and 4.4× higher
throughput with similar P99 latency, compared with Sher-
man, ROLEX, and SMART. The improvement comes from
the lower read amplifications and the lower cache consump-
tion. Besides, with fewer node splits (under only 5% insert),
CHIME achieves a similar P99 latency to SMART-Opt.

Update workloads (YCSB A, B). Read optimizations also
benefit update workloads since each update first reads an ob-
ject. Compared with Sherman, ROLEX, and SMART, CHIME
reaches 2.2×, 2.6× and 2.5× higher throughput for YCSB
A, and 3.6×, 3.6× and 4.1× higher throughput for YCSB B.
Since the update operation of CHIME has almost no write
amplifications, the throughput of CHIME is nearer to that
of SMART-Opt in the update-intensive workload (i.e., YCSB
A) than the search-intensive one (i.e., YCSB B).

The scanworkload (YCSBE). For YCSB E,CHIME achieves
2.5× higher throughput and 2.5× lower P99 latency than
SMART and SMART-Opt. This is because small-sized reads
onKV-discrete range indexes rapidly saturate the IOPS upper-
bound of RDMA NICs on MNs [36], resulting in low per-
formance. ROLEX performs the best since it has the small-
est span size and is least affected by the read amplification.
CHIME outperforms Sherman by 1.2× in throughput since
it excludes some unnecessary entries for each leaf fetch,
thus mitigating read amplifications of scan operations, as
mentioned in Section 4.4.
Variable-length KV items. Figure 13 shows the perfor-

mance comparison under 320 clients with variable-length

KV items supported. CHIME-Indirect still performs the best
in most workloads due to its lower read amplifications than
ROLEX-Indirect and Marlin, and lower cache consumption
than SMART-RCU. Besides, there are two differences com-
pared with previous results: 1) YCSB A. Marlin exhibits the
lowest P99 latency in YCSB A, as it reduces write conflicts by
enabling concurrent KV updates within the same leaf node.
This design is orthogonal to the CHIME design. 2) YCSB
E. SMART-RCU performs the best in YCSB E, as it does not
store items out of leaf nodes, saving one RTT.

Cache consumption. Figure 14 shows the cache consump-
tion of the four range indexes with sufficient caches. With
the number of loaded items growing from 40 to 120 million,
the cache consumption of KV-contiguous range indexes re-
mains below 100 MB. With 60 million items loaded, CHIME,
Sherman, ROLEX, and SMART consume 27.6 MB, 23.6 MB,
31.2 MB, and 503.2 MB, respectively, in their computing-side
caches. Together with the 30 MB hotspot buffer, CHIME
achieves an 8.7× lower cache consumption than SMART. As
the cache consumption increases linearly with the dataset
size, CHIME’s cache consumption will be approximately 450
MB for 1 billion items.
5.3 Factor Analysis
Figure 15 presents the factor analysis for techniques inCHIME.
We apply each proposed technique one by one to Sherman
and ROLEX, respectively. The following starts with Sherman.
+ Hopscotch leaf node. The hopscotch leaf node con-

tributes to all workloads except for YCSB LOAD. The through-
put improves by 2.3×, and P50/P99 latency decreases by
2.4×/2.0×with YCSB C since clients only need to read neigh-
borhoods rather than entire leaf nodes.
+ Vacancy bitmap piggybacking. The vacancy bitmap

piggybacking contributes to YCSB LOAD. The throughput
improves by 1.6×, and P50/P99 latency decreases by 1.7×/1.4×
since clients only need to read hop ranges rather than entire
leaf nodes, with no extra metadata access.

+ Leaf metadata replication. The leaf metadata replica-
tion contributes to all workloads. It eliminates the dedicated
READ for the leaf metadata, saving one remotememory access
for each request. For YCSB C, it brings a 1.6× improvement
in throughput and a 1.6×/1.4× reduction in P50/P99 latency.

+ Sibling-based validation. Figure 16 shows how sibling-
based validations (SV) optimize the metadata overhead. As

121

Figure 14. The compari-
son of cache consumption
of range indexes on DM.

(a) Start with the B+ tree (Sherman). (b) Start with the learned index (64-span ROLEX).

Figure 15. The factor analysis for techniques in CHIME with 320 clients.

Figure 16. The contribution
of sibling-based validations.

Figure 17.The contribution
of speculative reads.

the key size increases from 8 to 256 bytes, the optimization
increases from 1.4× to 8.6×, allowing CHIME to achieve a
comparable metadata size with other indexes.
+ Speculative read. The speculative read mechanism

brings only a negligible improvement in Figure 15 since
the 320 clients do not saturate the network bandwidth. As
shown in Figure 17, with more than 500 clients, the network
bandwidth is saturated and thus the speculative read (SR)
mechanism improves the peak throughput by up to 1.2×with
YCSB C, allowing CHIME to achieve a closer performance
to the optimal case. This is approximately consistent with
the optimization space (1.3×) stated in Section 3.2.3.
CHIME vs. CHIME-Learned. We call the final learned

index in Figure 15b as CHIME-Learned. CHIME outperforms
CHIME-Learned since the latter may fetch multiple neigh-
borhoods (one for each leaf node) for each search due to the
unavoidable model error. Thus, the combination of the B+
tree and hopscotch hashing is preferred in our design.
5.4 Sensitivity Analysis
In this section, we investigate how the parameters of CHIME
affect its performance. Without explicit mention, we use 640
clients and YCSB C.

Workload skewness. Figure 18a shows the performances
of range indexes on a generated Zipfian workload [33] (50%
search + 50% update) with different skewness. As the skew-
ness grows from 0.5 to 0.99, the performances of CHIME,
Sherman, and ROLEX slightly increase thanks to the RDWC
technique, where themore skewed the workload is, the better
RDWC performs in combining requests. SMART’s perfor-
mance decreases in highly skewed workloads since lock-fail
retries and remote traversals exacerbate its IOPS bottleneck.
Impact of cache size. As shown in Figure 18b, CHIME,

Sherman, and ROLEX only require small cache sizes (< 100

MB) to reach peak throughput, while SMART requires 400
MB caches. The peak throughput of CHIME is 4.3× higher
than Sherman and ROLEX and comparable with SMART due
to the low read amplification.

Impact of value size. Figures 18c and 18d show how the
value size affects performances with values stored inside
(inline value) and outside leaf nodes (indirect value). As the
inline value size grows from 8 to 512 bytes,CHIME, Sherman,
and ROLEX show more severe performance declines (9.4×,
15.5× and 23.0×) than SMART (1.2×) since neighborhood
and leaf node sizes grow with value size, causing the rapidly
increasing bandwidth consumption. CHIME performs simi-
larly to SMART with large inline value sizes since the 30 MB
hotspot buffer cannot completely eliminate the read amplifi-
cations of hopscotch hashing. The larger the value size, the
more network bandwidth is wasted by the read amplifica-
tions. This problem is addressed with indirect values since
values are outside the leaf node and thus larger value sizes
will not waste more bandwidth. InCHIME, the key and value
are always stored contiguously and accessed together. Thus,
the impact of key size is similar to that of value size.
Impact of span size. As shown in Figure 18e, CHIME’s

performance is almost unaffected by the span size since
CHIME does not read the entire leaf node. As the span
size grows from 8 to 512, the performances of Sherman and
ROLEX decrease by 18.6× and 6.4×, respectively. Note that
the performance of CHIME declines when the span size is
less than 32 since small span sizes increase the frequency
of the wrap-around corner case. As shown in Figure 19a,
the larger the span size of CHIME, the lower the cache con-
sumption and the lower the maximum load factor. We set
CHIME’s span size to 64 to achieve low cache consumption
(27.6 MB) and an acceptable maximum load factor (88.1%).

Impact of neighborhood size. As shown in Figures 18f
and 19b, as CHIME’s neighborhood size grows from 2 to 16,
the performance decreases by 1.1×, and the maximum load
factor increases from 37.7% to 99.8%. We set the neighbor-
hood size to 8 to maximize performance while maintaining
an acceptable maximum load factor. We also identify an in-
teresting phenomenon: smaller neighborhood sizes increase
cache consumption. This is because the smaller neighbor-
hood leads to more hash collisions, resulting in more node
splits and thus more internal nodes to cache.

122

(a) Skewness. (b) Cache size. (c) Value size (Inline). (d) Value size (Indirect). (e) Span size. (f) Neighborhood size.

Figure 18. The sensitivity analysis for overall performance.

(a) Span size. (b) Neighborhood size. (c) Hotspot buffer size.

Figure 19. In-depth analyses of CHIME with other metrics.

Impact of hotspot buffer size. Figure 19c shows the im-
pact of hotspot buffer size on the performance. As the buffer
size grows from 0 to 50 MB, the throughput of CHIME in-
creases by 1.2×. Under the skewed YCSB workload, the 30
MB buffer achieves an 81.0% hit ratio, with a rate of correct
speculations nearing 100% thanks to the fingerprints.

6 Related Work
6.1 Disaggregated Memory
Existing studies explore DM in many areas, e.g., hardware de-
signs [21, 28, 34, 57], operating systems [4, 20, 50, 54, 64], soft-
ware runtimes [8, 37, 48, 55, 65], storage systems [2, 30, 51–
53, 63], and data structures [5, 32, 36, 56, 69]. The studies
most related to CHIME are DM range indexes [5, 32, 36, 56].
However, existing approaches all suffer from the trade-off be-
tween memory-side read amplifications and computing-side
cache consumption. CHIME is a hybrid index that exhibits
both low read amplifications and low cache consumption.
PolarDB Serverless [9], a real database product for disaggre-
gated datacenters, uses a memory-disaggregated B+ tree to
support range queries. DINOMO [30], a KV store on disaggre-
gated persistent memory, proposes ownership partitioning
to reduce coordination overheads, which is transparent to
indexing. It uses RECIPE [29] for its index, which converts
in-memory indexes to persistent ones and is orthogonal to
CHIME’s design. CHIME focuses on optimizing indexing
data structures rather than complete database designs or
data persistence.
6.2 RDMA-Based Indexes
RDMA has attracted increasing research attention in terms
of the design of data indexes for distributed systems. Many
studies among them conduct operations via DM-unfriendly
RPCs [16, 39, 40, 58, 59] or customized hardware [3, 7, 25,
49]. CHIME focuses on building DM-friendly indexes with
commodity RDMA NICs.

As for hash indexes, RACE [69] is a one-sided RDMA-
based closed-addressing hashing with lock-free remote con-
currency control. FaRM [16] proposes an RDMA-based hop-
scotch hashing with high space efficiency. It only supports
a neighborhood size of two and RPC-based index modifica-
tions, which is unsuitable for DM. CHIME includes a fully
one-sided RDMA-based hopscotch hashing design.

As for range indexes, FG [67] is the first one-sided B-link
tree index on DM. Sherman [56] and Marlin [5] are B+ trees
on DM with several RDMA-friendly write optimizations.
ROLEX [32] is the state-of-the-art learned index on DM that
uses machine-learning models as computing-side caches to
achieve lower cache consumption. However, they all suffer
from inherent read amplifications. SMART [36] uses a radix
tree as a range index on DM with almost no read amplifica-
tions. However, it exhibits high cache consumption. CHIME
breaks the trade-off between read amplifications and cache
consumption with a hybrid tree design.
6.3 Hybrid Indexes
Constructing a hybrid index with the B+ tree and the hash
table is not a new idea [3, 10, 38, 61]. Among them, HT-
tree [3] is the most related one to DM. It proposes a new
tree structure where each leaf node stores base pointers of
hash tables to enable caching most levels of large trees in far
memory. Unlike HT-tree, CHIME is specifically designed for
DM and addresses the challenges, e.g., concurrency control
and metadata management, of constructing such a hybrid
index on DM.

7 Conclusion
This paper identifies the trade-off between the memory-side
read amplifications and the computing-side cache consump-
tion for range indexes on DM. We propose to use a hybrid
index, CHIME, that combines B+ trees with hopscotch hash-
ing to break the trade-off. Our evaluation results verify the
efficacy and efficiency of CHIME.

Acknowledgments
We sincerely thank our anonymous shepherd and review-
ers for their constructive comments and suggestions. This
work is supported by the National Natural Science Founda-
tion of China (Project No. 623B2026) and the Open Fund of
PDL (Project No.WDZC20245250106). Yangfan Zhou is the
corresponding author (zyf@fudan.edu.cn).

123

References
[1] Marcos K. Aguilera, Emmanuel Amaro, Nadav Amit, Erika Hunhoff,

Anil Yelam, and Gerd Zellweger. 2023. Memory disaggregation: why
now and what are the challenges. ACM SIGOPS Oper. Syst. Rev. 57, 1
(2023), 38–46. https://doi.org/10.1145/3606557.3606563

[2] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, AntoineMu-
rat, Athanasios Xygkis, and Igor Zablotchi. 2023. uBFT: Microsecond-
Scale BFT using Disaggregated Memory. In Proceedings of the 28th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2, ASPLOS 2023,
Vancouver, BC, Canada, March 25-29, 2023. ACM, 862–877. https:
//doi.org/10.1145/3575693.3575732

[3] Marcos K. Aguilera, Kimberly Keeton, Stanko Novakovic, and Sharad
Singhal. 2019. Designing Far Memory Data Structures: Think Outside
the Box. In Proceedings of the Workshop on Hot Topics in Operating
Systems, HotOS 2019, Bertinoro, Italy, May 13-15, 2019. ACM, 120–126.
https://doi.org/10.1145/3317550.3321433

[4] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and
Scott Shenker. 2020. Can far memory improve job throughput?. In
EuroSys ’20: Fifteenth EuroSys Conference 2020, Heraklion, Greece, April
27-30, 2020. ACM, 14:1–14:16. https://doi.org/10.1145/3342195.3387522

[5] Hang An, Fang Wang, Dan Feng, Xiaomin Zou, Zefeng Liu, and Jian-
shun Zhang. 2023. Marlin: A Concurrent andWrite-Optimized B+-tree
Index on Disaggregated Memory. In Proceedings of the 52nd Inter-
national Conference on Parallel Processing, ICPP 2023, Salt Lake City,
UT, USA, August 7-10, 2023. ACM, 695–704. https://doi.org/10.1145/
3605573.3605576

[6] InfiniBand Trade Association. Accessed: 2024. Enabling the Modern
Data Center – RDMA for the Enterprise. https://www.infinibandta.org.

[7] Matthew Burke, Sowmya Dharanipragada, Shannon Joyner, Adriana
Szekeres, Jacob Nelson, Irene Zhang, and Dan R. K. Ports. 2021. PRISM:
Rethinking the RDMA Interface for Distributed Systems. In SOSP
’21: ACM SIGOPS 28th Symposium on Operating Systems Principles,
Virtual Event / Koblenz, Germany, October 26-29, 2021. ACM, 228–242.
https://doi.org/10.1145/3477132.3483587

[8] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al
Maruf, Onur Mutlu, and Aasheesh Kolli. 2021. Rethinking software
runtimes for disaggregated memory. In ASPLOS ’21: 26th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, Virtual Event, USA, April 19-23, 2021. ACM,
79–92. https://doi.org/10.1145/3445814.3446713

[9] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, ShengWang, Qingda
Hu, Xuntao Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang, Bo Wang,
Yuhui Wang, Haiqing Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu,
Wei Hu, Jianwei Zhao, Yusong Gao, Songlu Cai, Yunyang Zhang, and
Jiawang Tong. 2021. PolarDB Serverless: A Cloud Native Database for
Disaggregated Data Centers. In SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021. ACM,
2477–2489. https://doi.org/10.1145/3448016.3457560

[10] Hokeun Cha, Xiangpeng Hao, Tianzheng Wang, Huanchen Zhang,
Aditya Akella, and Xiangyao Yu. 2023. Blink-hash: An Adaptive Hybrid
Index for In-Memory Time-Series Databases. Proc. VLDB Endow. 16, 6
(2023), 1235–1248. https://www.vldb.org/pvldb/vol16/p1235-cha.pdf

[11] CXL Consortium. Accessed: 2024. Compute Express Link. https:
//www.computeexpresslink.org.

[12] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing,
SoCC 2010, Indianapolis, Indiana, USA, June 10-11, 2010. ACM, 143–154.
https://doi.org/10.1145/1807128.1807152

[13] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. 2001. Introduction to Algorithms, Second Edition. The MIT Press
and McGraw-Hill Book Company.

[14] NVIDIA Corporation. Accessed: 2024. Advanced Transport.
https://docs.nvidia.com/networking/display/ofedv502180/advanced+
transport.

[15] NVIDIA Corporation. Accessed: 2024. RDMA Aware Networks Pro-
gramming User Manual v1.7. https://docs.nvidia.com/networking/
display/rdmaawareprogrammingv17.

[16] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. 2014. FaRM: Fast Remote Memory. In Proceedings of the
11th USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI 2014, Seattle, WA, USA, April 2-4, 2014. USENIX Associa-
tion, 401–414. https://www.usenix.org/conference/nsdi14/technical-
sessions/dragojevi%C4%87

[17] Aleksandar Dragojevic, Dushyanth Narayanan, Edmund B. Nightin-
gale, Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel
Castro. 2015. No compromises: distributed transactions with consis-
tency, availability, and performance. In Proceedings of the 25th Sympo-
sium onOperating Systems Principles, SOSP 2015, Monterey, CA, USA, Oc-
tober 4-7, 2015. ACM, 54–70. https://doi.org/10.1145/2815400.2815425

[18] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuang-Ching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Opera-
tion of CloudLab. In 2019 USENIX Annual Technical Conference, USENIX
ATC 2019, Renton,WA, USA, July 10-12, 2019. USENIXAssociation, 1–14.
https://www.usenix.org/conference/atc19/presentation/duplyakin

[19] Goetz Graefe. 2010. A survey of B-tree locking techniques. ACM Trans.
Database Syst. 35, 3 (2010), 16:1–16:26. https://doi.org/10.1145/1806907.
1806908

[20] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G. Shin. 2017. Efficient Memory Disaggregation with In-
finiswap. In 14th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2017, Boston, MA, USA, March 27-29, 2017.
USENIX Association, 649–667. https://www.usenix.org/conference/
nsdi17/technical-sessions/presentation/gu

[21] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying
Zhang. 2022. Clio: a hardware-software co-designed disaggregated
memory system. In ASPLOS ’22: 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Lausanne, Switzerland, 28 February 2022 - 4 March 2022. ACM,
417–433. https://doi.org/10.1145/3503222.3507762

[22] Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear.
2020. The art of multiprocessor programming. Newnes.

[23] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. 2008. Hopscotch
Hashing. In Distributed Computing, 22nd International Symposium,
DISC 2008, Arcachon, France, September 22-24, 2008. Proceedings (Lecture
Notes in Computer Science, Vol. 5218). Springer, 350–364. https://doi.
org/10.1007/978-3-540-87779-0_24

[24] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design
Guidelines for High Performance RDMA Systems. In 2016 USENIX
Annual Technical Conference, USENIX ATC 2016, Denver, CO, USA, June
22-24, 2016. USENIX Association, 437–450. https://www.usenix.org/
conference/atc16/technical-sessions/presentation/kalia

[25] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im, Marco Canini,
Dejan Kostic, Youngjin Kwon, Simon Peter, and Emmett Witchel. 2021.
LineFS: Efficient SmartNIC Offload of a Distributed File System with
Pipeline Parallelism. In SOSP ’21: ACM SIGOPS 28th Symposium on
Operating Systems Principles, Virtual Event / Koblenz, Germany, October
26-29, 2021. ACM, 756–771. https://doi.org/10.1145/3477132.3483565

[26] Wook-Hee Kim, Madhava Krishnan Ramanathan, Xinwei Fu, Sanid-
hya Kashyap, and Changwoo Min. 2021. PACTree: A High Perfor-
mance Persistent Range Index Using PAC Guidelines. In SOSP ’21:
ACM SIGOPS 28th Symposium on Operating Systems Principles, Vir-
tual Event / Koblenz, Germany, October 26-29, 2021. ACM, 424–439.

124

https://doi.org/10.1145/3606557.3606563
https://doi.org/10.1145/3575693.3575732
https://doi.org/10.1145/3575693.3575732
https://doi.org/10.1145/3317550.3321433
https://doi.org/10.1145/3342195.3387522
https://doi.org/10.1145/3605573.3605576
https://doi.org/10.1145/3605573.3605576
https://www.infinibandta.org
https://doi.org/10.1145/3477132.3483587
https://doi.org/10.1145/3445814.3446713
https://doi.org/10.1145/3448016.3457560
https://www.vldb.org/pvldb/vol16/p1235-cha.pdf
https://www.computeexpresslink.org
https://www.computeexpresslink.org
https://doi.org/10.1145/1807128.1807152
https://docs.nvidia.com/networking/display/ofedv502180/advanced+transport
https://docs.nvidia.com/networking/display/ofedv502180/advanced+transport
https://docs.nvidia.com/networking/display/rdmaawareprogrammingv17
https://docs.nvidia.com/networking/display/rdmaawareprogrammingv17
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%C4%87
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%C4%87
https://doi.org/10.1145/2815400.2815425
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://doi.org/10.1145/1806907.1806908
https://doi.org/10.1145/1806907.1806908
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://doi.org/10.1145/3503222.3507762
https://doi.org/10.1007/978-3-540-87779-0_24
https://doi.org/10.1007/978-3-540-87779-0_24
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://doi.org/10.1145/3477132.3483565

https://doi.org/10.1145/3477132.3483589
[27] Donald Ervin Knuth. 1997. The art of computer programming, Volume I:

Fundamental Algorithms, 3rd Edition. Addison-Wesley. https://www.
worldcat.org/oclc/312910844

[28] Seung-Seob Lee, Yanpeng Yu, Yupeng Tang, Anurag Khandelwal,
Lin Zhong, and Abhishek Bhattacharjee. 2021. MIND: In-Network
Memory Management for Disaggregated Data Centers. In SOSP ’21:
ACM SIGOPS 28th Symposium on Operating Systems Principles, Vir-
tual Event / Koblenz, Germany, October 26-29, 2021. ACM, 488–504.
https://doi.org/10.1145/3477132.3483561

[29] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and
Vijay Chidambaram. 2019. RECIPE: converting concurrent DRAM
indexes to persistent-memory indexes. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP 2019, Huntsville, ON,
Canada, October 27-30, 2019, Tim Brecht and Carey Williamson (Eds.).
ACM, 462–477. https://doi.org/10.1145/3341301.3359635

[30] Se Kwon Lee, Soujanya Ponnapalli, Sharad Singhal, Marcos K. Aguil-
era, Kimberly Keeton, and Vijay Chidambaram. 2022. DINOMO: An
Elastic, Scalable, High-Performance Key-Value Store for Disaggre-
gated Persistent Memory. Proc. VLDB Endow. 15, 13 (2022), 4023–4037.
https://www.vldb.org/pvldb/vol15/p4023-lee.pdf

[31] Philip L. Lehman and S. Bing Yao. 1981. Efficient Locking for Con-
current Operations on B-Trees. ACM Trans. Database Syst. 6, 4 (1981),
650–670. https://doi.org/10.1145/319628.319663

[32] Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and Jiajie Sheng.
2023. ROLEX: A Scalable RDMA-oriented Learned Key-Value Store
for Disaggregated Memory Systems. In 21st USENIX Conference on File
and Storage Technologies, FAST 2023, Santa Clara, CA, USA, February
21-23, 2023. USENIX Association, 99–114. https://www.usenix.org/
conference/fast23/presentation/li-pengfei

[33] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. 2014. MICA: A Holistic Approach to Fast In-Memory Key-Value
Storage. In Proceedings of the 11th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2014, Seattle, WA, USA, April
2-4, 2014. USENIX Association, 429–444. https://www.usenix.org/
conference/nsdi14/technical-sessions/presentation/lim

[34] Kevin T. Lim, Jichuan Chang, Trevor N. Mudge, Parthasarathy Ran-
ganathan, Steven K. Reinhardt, and Thomas F. Wenisch. 2009. Disag-
gregated memory for expansion and sharing in blade servers. In 36th
International Symposium on Computer Architecture (ISCA 2009), June
20-24, 2009, Austin, TX, USA. ACM, 267–278. https://doi.org/10.1145/
1555754.1555789

[35] Ling Liu, Wenqi Cao, Semih Sahin, Qi Zhang, Juhyun Bae, and Yanzhao
Wu. 2019. Memory Disaggregation: Research Problems and Opportu-
nities. In 39th IEEE International Conference on Distributed Computing
Systems, ICDCS 2019, Dallas, TX, USA, July 7-10, 2019. IEEE, 1664–1673.
https://doi.org/10.1109/ICDCS.2019.00165

[36] Xuchuan Luo, Pengfei Zuo, Jiacheng Shen, Jiazhen Gu, Xin Wang,
Michael R. Lyu, and Yangfan Zhou. 2023. SMART: AHigh-Performance
Adaptive Radix Tree for Disaggregated Memory. In 17th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI 2023,
Boston, MA, USA, July 10-12, 2023. USENIX Association, 553–571.
https://www.usenix.org/conference/osdi23/presentation/luo

[37] Haoran Ma, Shi Liu, Chenxi Wang, Yifan Qiao, Michael D. Bond,
Stephen M. Blackburn, Miryung Kim, and Guoqing Harry Xu. 2022.
Mako: a low-pause, high-throughput evacuating collector for memory-
disaggregated datacenters. In PLDI ’22: 43rd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Imple-
mentation, San Diego, CA, USA, June 13 - 17, 2022. ACM, 92–107.
https://doi.org/10.1145/3519939.3523441

[38] Linsen Ma, Rui Xie, and Tong Zhang. 2023. ZipKV: In-Memory Key-
Value Store with Built-In Data Compression. In Proceedings of the
2023 ACM SIGPLAN International Symposium on Memory Management,
ISMM 2023, Orlando, FL, USA, 18 June 2023. ACM, 150–162. https:

//doi.org/10.1145/3591195.3595273
[39] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-

Sided RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store. In
2013 USENIX Annual Technical Conference, San Jose, CA, USA, June
26-28, 2013. USENIX Association, 103–114. https://www.usenix.org/
conference/atc13/technical-sessions/presentation/mitchell

[40] Christopher Mitchell, Kate Montgomery, Lamont Nelson, Siddhartha
Sen, and Jinyang Li. 2016. Balancing CPU and Network in the Cell
Distributed B-Tree Store. In 2016 USENIX Annual Technical Conference,
USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016. USENIX Associ-
ation, 451–464. https://www.usenix.org/conference/atc16/technical-
sessions/presentation/mitchell

[41] Michael Mitzenmacher. 2001. The Power of Two Choices in Random-
ized Load Balancing. IEEE Trans. Parallel Distributed Syst. 12, 10 (2001),
1094–1104. https://doi.org/10.1109/71.963420

[42] MySQL. Accessed: 2024. https://www.mysql.com.
[43] Vlad Nitu, Boris Teabe, Alain Tchana, Canturk Isci, and Daniel Hagi-

mont. 2018. Welcome to zombieland: practical and energy-efficient
memory disaggregation in a datacenter. In Proceedings of the Thir-
teenth EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26,
2018. ACM, 16:1–16:12. https://doi.org/10.1145/3190508.3190537

[44] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. J.
Algorithms 51, 2 (2004), 122–144. https://doi.org/10.1016/j.jalgor.2003.
12.002

[45] PostgreSQL. Accessed: 2024. https://www.postgresql.org.
[46] Redis. Accessed: 2024. http://redis.io.
[47] RocksDB. Accessed: 2024. https://rocksdb.org.
[48] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam

Belay. 2020. AIFM: High-Performance, Application-Integrated Far
Memory. In 14th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2020, Virtual Event, November 4-6, 2020. USENIX
Association, 315–332. https://www.usenix.org/conference/osdi20/
presentation/ruan

[49] Henry N. Schuh, Weihao Liang, Ming Liu, Jacob Nelson, and Arvind
Krishnamurthy. 2021. Xenic: SmartNIC-Accelerated Distributed Trans-
actions. In SOSP ’21: ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, Virtual Event / Koblenz, Germany, October 26-29, 2021.
ACM, 740–755. https://doi.org/10.1145/3477132.3483555

[50] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.
LegoOS: A Disseminated, Distributed OS for Hardware Resource Dis-
aggregation. In 13th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10,
2018. USENIX Association, 69–87. https://www.usenix.org/conference/
osdi18/presentation/shan

[51] Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Yuxin Su, Jiazhen Gu, Hao
Feng, Yangfan Zhou, and Michael R. Lyu. 2023. Ditto: An Elastic
and Adaptive Memory-Disaggregated Caching System. In Proceedings
of the 29th Symposium on Operating Systems Principles, SOSP 2023,
Koblenz, Germany, October 23-26, 2023. ACM, 675–691. https://doi.org/
10.1145/3600006.3613144

[52] Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Tianyi Yang, Yuxin Su,
Yangfan Zhou, and Michael R. Lyu. 2023. FUSEE: A Fully Memory-
Disaggregated Key-Value Store. In 21st USENIX Conference on File and
Storage Technologies, FAST 2023, Santa Clara, CA, USA, February 21-23,
2023. USENIX Association, 81–98. https://www.usenix.org/conference/
fast23/presentation/shen

[53] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. 2020. Disaggregating
Persistent Memory and Controlling Them Remotely: An Exploration of
Passive Disaggregated Key-Value Stores. In 2020 USENIX Annual Tech-
nical Conference, USENIX ATC 2020, July 15-17, 2020. USENIX Associa-
tion, 33–48. https://www.usenix.org/conference/atc20/presentation/
tsai

[54] Lluís Vilanova, Lina Maudlej, Shai Bergman, Till Miemietz, Matthias
Hille, Nils Asmussen, Michael Roitzsch, Hermann Härtig, and Mark

125

https://doi.org/10.1145/3477132.3483589
https://www.worldcat.org/oclc/312910844
https://www.worldcat.org/oclc/312910844
https://doi.org/10.1145/3477132.3483561
https://doi.org/10.1145/3341301.3359635
https://www.vldb.org/pvldb/vol15/p4023-lee.pdf
https://doi.org/10.1145/319628.319663
https://www.usenix.org/conference/fast23/presentation/li-pengfei
https://www.usenix.org/conference/fast23/presentation/li-pengfei
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://doi.org/10.1145/1555754.1555789
https://doi.org/10.1145/1555754.1555789
https://doi.org/10.1109/ICDCS.2019.00165
https://www.usenix.org/conference/osdi23/presentation/luo
https://doi.org/10.1145/3519939.3523441
https://doi.org/10.1145/3591195.3595273
https://doi.org/10.1145/3591195.3595273
https://www.usenix.org/conference/atc13/technical-sessions/presentation/mitchell
https://www.usenix.org/conference/atc13/technical-sessions/presentation/mitchell
https://www.usenix.org/conference/atc16/technical-sessions/presentation/mitchell
https://www.usenix.org/conference/atc16/technical-sessions/presentation/mitchell
https://doi.org/10.1109/71.963420
https://www.mysql.com
https://doi.org/10.1145/3190508.3190537
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1016/j.jalgor.2003.12.002
https://www.postgresql.org
http://redis.io
https://rocksdb.org
https://www.usenix.org/conference/osdi20/presentation/ruan
https://www.usenix.org/conference/osdi20/presentation/ruan
https://doi.org/10.1145/3477132.3483555
https://www.usenix.org/conference/osdi18/presentation/shan
https://www.usenix.org/conference/osdi18/presentation/shan
https://doi.org/10.1145/3600006.3613144
https://doi.org/10.1145/3600006.3613144
https://www.usenix.org/conference/fast23/presentation/shen
https://www.usenix.org/conference/fast23/presentation/shen
https://www.usenix.org/conference/atc20/presentation/tsai
https://www.usenix.org/conference/atc20/presentation/tsai

Silberstein. 2022. Slashing the disaggregation tax in heterogeneous
data centers with FractOS. In EuroSys ’22: Seventeenth European Con-
ference on Computer Systems, Rennes, France, April 5 - 8, 2022. ACM,
352–367. https://doi.org/10.1145/3492321.3519569

[55] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh
Nguyen, Michael D. Bond, Ravi Netravali, Miryung Kim, and Guo-
qing Harry Xu. 2020. Semeru: A Memory-Disaggregated Managed
Runtime. In 14th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2020, Virtual Event, November 4-6, 2020. USENIX
Association, 261–280. https://www.usenix.org/conference/osdi20/
presentation/wang

[56] Qing Wang, Youyou Lu, and Jiwu Shu. 2022. Sherman: A Write-
Optimized Distributed B+Tree Index on Disaggregated Memory. In
SIGMOD ’22: International Conference on Management of Data, Philadel-
phia, PA, USA, June 12 - 17, 2022. ACM, 1033–1048. https://doi.org/10.
1145/3514221.3517824

[57] Qing Wang, Youyou Lu, Erci Xu, Junru Li, Youmin Chen, and Jiwu Shu.
2021. Concordia: Distributed Shared Memory with In-Network Cache
Coherence. In 19th USENIX Conference on File and Storage Technologies,
FAST 2021, February 23-25, 2021. USENIX Association, 277–292. https:
//www.usenix.org/conference/fast21/presentation/wang

[58] Xingda Wei, Rong Chen, and Haibo Chen. 2020. Fast RDMA-based
Ordered Key-Value Store using Remote Learned Cache. In 14th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2020, Virtual Event, November 4-6, 2020. USENIX Association, 117–135.
https://www.usenix.org/conference/osdi20/presentation/wei

[59] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen.
2015. Fast in-memory transaction processing using RDMA and HTM.
In Proceedings of the 25th Symposium on Operating Systems Principles,
SOSP 2015, Monterey, CA, USA, October 4-7, 2015. ACM, 87–104. https:
//doi.org/10.1145/2815400.2815419

[60] Gerhard Weikum and Gottfried Vossen. 2002. Transactional Infor-
mation Systems: Theory, Algorithms, and the Practice of Concurrency
Control and Recovery. Morgan Kaufmann.

[61] Haichang Yang, Zhaoshi Li, JiaweiWang, Shouyi Yin, ShaojunWei, and
Leibo Liu. 2021. HeteroKV: A Scalable Line-rate Key-Value Store on
Heterogeneous CPU-FPGA Platforms. In Design, Automation & Test in
Europe Conference & Exhibition, DATE 2021, Grenoble, France, February
1-5, 2021. IEEE, 834–837. https://doi.org/10.23919/DATE51398.2021.
9474088

[62] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2020. A large scale analysis
of hundreds of in-memory cache clusters at Twitter. In 14th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2020, Virtual Event, November 4-6, 2020. USENIX Association, 191–208.
https://www.usenix.org/conference/osdi20/presentation/yang

[63] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu. 2022. FORD:
Fast One-sided RDMA-based Distributed Transactions for Disaggre-
gated Persistent Memory. In 20th USENIX Conference on File and Stor-
age Technologies, FAST 2022, Santa Clara, CA, USA, February 22-24,
2022. USENIX Association, 51–68. https://www.usenix.org/conference/
fast22/presentation/zhang-ming

[64] Qizhen Zhang, Xinyi Chen, Sidharth Sankhe, Zhilei Zheng, Ke Zhong,
Sebastian Angel, Ang Chen, Vincent Liu, and Boon Thau Loo. 2022. Op-
timizing Data-intensive Systems in Disaggregated Data Centers with
TELEPORT. In SIGMOD ’22: International Conference on Management
of Data, Philadelphia, PA, USA, June 12 - 17, 2022. ACM, 1345–1359.
https://doi.org/10.1145/3514221.3517856

[65] Yang Zhou, HassanM. G.Wassel, Sihang Liu, Jiaqi Gao, James Mickens,
Minlan Yu, Chris Kennelly, Paul Turner, David E. Culler, HenryM. Levy,
and Amin Vahdat. 2022. Carbink: Fault-Tolerant Far Memory. In 16th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2022, Carlsbad, CA, USA, July 11-13, 2022. USENIX Association,
55–71. https://www.usenix.org/conference/osdi22/presentation/zhou-
yang

[66] Tobias Ziegler, Jacob Nelson-Slivon, Viktor Leis, and Carsten Binnig.
2023. Design Guidelines for Correct, Efficient, and Scalable Synchro-
nization using One-Sided RDMA. Proc. ACM Manag. Data 1, 2 (2023),
131:1–131:26. https://doi.org/10.1145/3589276

[67] Tobias Ziegler, Sumukha Tumkur Vani, Carsten Binnig, Rodrigo Fon-
seca, and Tim Kraska. 2019. Designing Distributed Tree-based Index
Structures for Fast RDMA-capable Networks. In Proceedings of the 2019
International Conference on Management of Data, SIGMOD Conference
2019, Amsterdam, The Netherlands, June 30 - July 5, 2019. ACM, 741–758.
https://doi.org/10.1145/3299869.3300081

[68] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-Optimized and High-
Performance Hashing Index Scheme for Persistent Memory. In 13th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018. USENIX Association,
461–476. https://www.usenix.org/conference/osdi18/presentation/zuo

[69] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang, and Yu Hua.
2021. One-sided RDMA-Conscious Extendible Hashing for Disaggre-
gated Memory. In 2021 USENIX Annual Technical Conference, USENIX
ATC 2021, July 14-16, 2021. USENIX Association, 15–29. https:
//www.usenix.org/conference/atc21/presentation/zuo

126

https://doi.org/10.1145/3492321.3519569
https://www.usenix.org/conference/osdi20/presentation/wang
https://www.usenix.org/conference/osdi20/presentation/wang
https://doi.org/10.1145/3514221.3517824
https://doi.org/10.1145/3514221.3517824
https://www.usenix.org/conference/fast21/presentation/wang
https://www.usenix.org/conference/fast21/presentation/wang
https://www.usenix.org/conference/osdi20/presentation/wei
https://doi.org/10.1145/2815400.2815419
https://doi.org/10.1145/2815400.2815419
https://doi.org/10.23919/DATE51398.2021.9474088
https://doi.org/10.23919/DATE51398.2021.9474088
https://www.usenix.org/conference/osdi20/presentation/yang
https://www.usenix.org/conference/fast22/presentation/zhang-ming
https://www.usenix.org/conference/fast22/presentation/zhang-ming
https://doi.org/10.1145/3514221.3517856
https://www.usenix.org/conference/osdi22/presentation/zhou-yang
https://www.usenix.org/conference/osdi22/presentation/zhou-yang
https://doi.org/10.1145/3589276
https://doi.org/10.1145/3299869.3300081
https://www.usenix.org/conference/osdi18/presentation/zuo
https://www.usenix.org/conference/atc21/presentation/zuo
https://www.usenix.org/conference/atc21/presentation/zuo

	Abstract
	1 Introduction
	2 Background
	2.1 The Disaggregated Memory Architecture
	2.2 Range Indexes on Disaggregated Memory
	2.3 Hopscotch Hashing

	3 Analysis of Indexes Built on DM
	3.1 Motivation: Existing Indexes on DM
	3.2 Challenges: The Hybrid Index on DM

	4 The CHIME Design
	4.1 Three-Level Optimistic Synchronization
	4.2 Access-Aggregated Metadata Management
	4.3 Hotness-Aware Speculative Read
	4.4 Operations
	4.5 Discussions

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance Comparison
	5.3 Factor Analysis
	5.4 Sensitivity Analysis

	6 Related Work
	6.1 Disaggregated Memory
	6.2 RDMA-Based Indexes
	6.3 Hybrid Indexes

	7 Conclusion
	Acknowledgments
	References

