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Abstract—Code comment is important to facilitate code comprehension for developers. Recent studies suggest to generate

comments automatically with deep learning, in particular, based on neural machine translation models. However, such a promising

Neural Comment Generation (NCG) technique suffers from unsatisfactory performance, as well as poor usability, i.e., developers

cannot easily understand and modify the auto-generated comments. This paper suggests that a proper interpretation of how the

comments are generated can significantly improve the usability of NCG approaches. We propose a novel model-independent

framework, namely CCLink, to interpret the auto-generated comments. CCLink generates a set of code mutants and obtains their

corresponding comments. Based on these data, several contribution mining algorithms are designed to infer the key elements in code

that contributes to the generation of the key phrases in the comments. The links between code and its auto-generated comment can

thus be constructed. This in turn allows CCLink to visualize the links as the comment interpretations to developers. It greatly facilitates

manual verification and correction of the comments. We examine the performance of CCLink with different contribution mining

algorithms, NCG approaches, and real-world datasets. We also conduct an empirical study on 32 experienced Java programmers to

evaluate the effectiveness of CCLink. The results show that CCLink is promising in making NCG more usable with a proper

interpretation of the auto-generated comments.

Index Terms—Code comment, neural comment generation, software usability
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1 INTRODUCTION

CODE comprehension is critical tomodern software develop-
ment, especially for open source projects that newdevelop-

ers frequently join. It is a rigid need for those newdevelopers to
understand the project code written by others, while it is also a
quite labor-intensive task (e.g., 80% of the development time is
spent on understanding code as reported in [1]).

It has long been accepted that code comments, usually
brief descriptions of code snippets, can greatly facilitate
code comprehension. However, original developers may
not write good comments in practice due to negligence or
time constraints [2], [3]. As a result, new developers have to
put a lot of repetitive efforts to understand the existing

code. A promising solution is automatic code comment gen-
eration [4], [5], which auto-summarizes code into short, nat-
ural language text with an aim to reduce human efforts in
understanding the source code.

Current state-of-the-art approaches apply Neural Machine
Translation (NMT) to perform this task [6], [7], [8], [9]. Specifi-
cally, they adopt sequence-to-sequence neural networks
(e.g., [10]) to convert source code into natural language (i.e.,
code comments). Such Neural Comment Generation (NCG)
approaches can learn from human experiences, i.e., high-qual-
ity mannually-written code comments generally available in
mature open source projects (e.g., Linux,Android,OpenStack).
With the recent advancement of deep learning, NCG is consid-
ered a very promising research direction [9].

Unfortunately, state-of-the-art NCG approaches are still
far from being usable in practice [11]. Despite tremendous
research efforts to improve NMT models, the quality of the
generated comments is not yet satisfactory. For example,
DeepCom [9] and ast-attengru [8], two state-of-the-art
NCG approaches, generally cannot achieve a BLEU value
over 40% (BLEU is a widely-used metric to evaluation text
quality [12]). Such poor performance makes developers
unwilling to use NCG approaches in practice.

Except for the unsatisfactory performance, the lack of
good usability is also a critical reason why NCG is not appli-
cable. It is difficult for developers to understand and modify
the auto-generated comments. This work, unlike existing
studies that emphasize on improving the performance of
NCG, proposes to address its usability issue. We consider
that the interpretability of the auto-generated comments is
critical to the usability of NCG approaches. Actually, it has
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long been suggested that providing an interpretation of soft-
ware behavior will significantly improve the software
usability [13], [14], [15], [16], especially for software that
adopts machine learning [17], [18] in a black-box manner. In
the context where new developers would like to contribute
comments to open source projects, proper interpretations of
the auto-generated comments can greatly facilitate develop-
ers to comprehend and further improve the comments.

To this end,we propose a novel framework CCLink (Code-
Comment Links) to interpret the comments generated by
NCG approaches. CCLink aims to find the code segments
which contribute to the generation of key information (i.e.,
key phrases called focuses) in the auto-generated comments.
CCLink is inspired by the success of natural language transla-
tion (e.g., Google Translate [19]), where its result is instantly
explainable: A user can check the resulting phrases against
their counterparts in the source sequence. In this way,
the quality of the translation can be easily perceived,
and the user can accordingly modify the incorrect
phrases. In addition, those modifications can be recorded
and further used as a new type of valuable feedback
data to refine the original intelligent models.

However, the link between code and its comment is less
obvious. It is not straight-forward for a developer to know
why a sentence is generated with the code. Automatically
inferring such links is actually very challenging. It is notori-
ously difficult to interpret deep learning models [20]. Infer-
ring such links by examining the underlying logic of an
NCG approach is infeasible currently. Fortunately, we note
that code is also a way of human communication [11],
where its internal documentation (e.g., variable names) to
some extent reflect its intention [21], [22]. This allows
CCLink to mine the links between code and its auto-gener-
ated comment, by considering the deep learning model of
an NCG as a black box.

In particular, CCLink first determines the focuses (i.e., key
phrases) in the auto-generated comment, then infers which
parts of code result in each focus with a contribution mining
method. To this end, CCLink generates a series of code
mutants of the code and obtains their auto-generated com-
ments. Based on the resulting comments, CCLink divides
the mutants into two categories: one can produce the com-
ments with a specific focus and the other cannot. Based on
these data, we tailor data mining algorithms to determine
the code segments that contribute to the generation of the
focus. The links between code and its auto-generated com-
ment can thus be constructed. This in turn allows CCLink to
visualize the links as the comment interpretations to
developers.

To the best of our knowledge, CCLink is the first solution
dedicated to improving the usability of NCG from the per-
spective of interpretability. We design comprehensive experi-
ments to evaluate CCLink. First, we examine the performance
of CCLink with different contribution mining algorithms,
NCG approaches and real-world datasets. Then, we conduct
an empirical study, wherewe recruit 32 experienced Java pro-
grammers to perform a comment-correction task with/with-
out the interpretation functionality of CCLink. The results
verify the effectiveness of CCLink. The source code of CCLink
(including that for experiments) is open-source available at
https://github.com/CCLink-demo.

The main contributions of this paper are as follows:

� We are the first to propose the interpretability of the
auto-generated comments is key to the usability of
NCG approaches, and provide a systematic study on
comment interpretation.

� We design CCLink, a novel NMT model-indepen-
dent framework to interpret auto-generated com-
ments, which includes several specifically-tailored
interpretation methods for this task.

� We show that CCLink is promising in making NCG
more usable with a proper interpretation of the auto-
generated comments via comprehensive experi-
ments and user studies.

The rest of paper is organized as follows. Section 2 pro-
vides the preliminaries and our researchmotivation.We elab-
orate our CCLink design in Section 3. Sections 4 and 5 report
our experimental results and empirical study. Section 6 fur-
ther discusses our experimental and empirical studies, where
we provide and analyze good/bad examples of links, the
threats to validity, and the implications. We survey related
work in Section 7 and finally conclude thiswork in Section 8.

2 BACKGROUND AND MOTIVATION

Neuralmachine translation (NMT) is amachine learning tech-
nique that adopts deep neural networks to convert a source
language sequence to a target language sequence. It has
shown its good performance in language translation, without
requiring feature extraction efforts typically required in tradi-
tional approaches [23], [24]. Fig. 1 shows a typical, widely-
used NMT model as an example [10]. It applies Attentional
RNN Encoder-Decoder, which includes two RNNs (recurrent
neural networks). One RNN, namely, the encoder, transforms
the source sequence to a vector representation (i.e., an embed-
ding). The other, namely, the decoder, then transforms the
embedding into the target sequence. An attention mechanism
is usually introduced to determine the weights of the words
in the source sequence during translation [10]. RNN cells can
also be replaced with long short-termmemory (LSTM) [25] or
the gated recurrent unit (GRU) [26], so as to handle long-
sequence scenarios.

NMT has recently been proposed to conduct automatic
code comment generation [6], [27], which we call Neural
Comment Generation (NCG) in our following discussion. The
underlying notion of NCG is that software code is a form of
human communication, which has similar statistical proper-
ties as natural language [11]. By treating code as a source
language sequence, an NMT model can convert it into a tar-
get language sequence (i.e., code comments). Existing stud-
ies have shown that NCG is an effective, promising
mechanism [6], [7], [8], [9], [27], [28], [29], [30].

Fig. 1. Attentional RNN Encoder-Decoder.
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However, NCG is not yet a mature technique in practical
scenarios due to its bad performance (i.e., the quality of the
auto-generated comments) [8], [9], [31]. Meanwhile, existing
NCG approaches also suffer from poor usability: Developers
cannot easily understand and correct the auto-generated
comments. Fig. 2 presents a Java code segment and its com-
ment generated by attendgru [8], a typical NCG
approach. The code is actually for evaluating an expression
with the given arguments. But the generated comment
fails to precisely present its functionality, where the
”arguments” is wrongly identified as an ”expression”. By
reading such comments, a developer cannot easily compre-
hend the intention of the code without carefully examining
the entire code. We can see that even for such a state-of-the-
art approach as attendgru, it is still way before it can
effectively reduce human efforts in comprehending code
and writing comments.

To mitigate the gap in NCG from research to practice,
this work aims to address the usability issue of NCG. Actu-
ally, software usability has long been suggested as a key
dimension to evaluate the quality of a software [32], [33],
[34], as it significantly affects the usage of software function-
alities [35]. In particular, we suggest that NCG can be made
more usable by improving its interpretability, i.e., providing a
way for developers to comprehend and improve the auto-
generated comments more easily.

Our idea is inspired by the success of natural language
translation (e.g., Google Translate [19]), where an explain-
able result is critical to its usability. In such application sce-
narios, two phrases in the source and target sequences
typically have a natural, straightforward connection, e.g.,
”ingenier�ıa de software” in Spanish and ”software engineer-
ing” in English. Users can compare the resulting phrases
with their counterparts in the source sequence, and examine
the correctness of the translation. They can accordingly
modify the result to make it more accurate.

Unfortunately, unlike natural language, the link between
code and its comment is less obvious. Again, consider the
example in Fig. 2. It is hard for developers to instantly know
how the comment is generated with the code. They then
cannot easily modify the imperfect result. Instead, they may
tend to simply discard this comment and write a new one
by reading the entire code (This is also confirmed in our
field study, elaborated in Section 5).

But, suppose how the comments are generated with the
code can be explained. As illustrated in Fig. 2, ”evaluates”
is from the statement that evaluates the expression; ”given
expressions” is from that creates the expression; and
”current expression” is from the parameter list. Developers
can identify whether the comments are correctly-written
more conveniently. This can also allow her to improve the
comments accordingly. For example, change the ”as the cur-
rent expression” to ”with the given arguments” to describe
the parameter list.

However, it is extremely challenging to provide such
interpretations. It is notoriously hard to interpret how and
why a deep learning algorithm produces a specific result
[20]. Despite many attempts in the literature, it remains an
open problem [36], [37], [38], [39], [40], [41]. Fortunately, in
this task, we only need to find out which part of the code
that contributes to the resulting comment words, without
exploring the complex mechanisms of NMT. In other words,
we can consider the NMT algorithm as a black box, and infer
the connection between the code and the resulting com-
ments. This allows us to greatly simplify the interpretation
mechanism. Next, we will elaborate on how we specifically
design such a framework, namely, CCLink (Code-Comment
Links), to interpret the results of NCG approaches, with an
aim to improve their usability.

3 CCLINK DESIGN AND IMPLEMENTATION

As we have discussed, it is helpful to provide developers
with the critical subsequences of their concern in the result-
ing comment, together with their corresponding code
segments that contribute to the generation of such subse-
quences. In our following discussions, we call such subse-
quences focuses. If every focus can correctly describe its
corresponding code segments, the comment can be accept-
able to developers. Otherwise, they can accordingly modify
the comment by correcting the wrong focuses. In this regard,
CCLink finds such a mapping between each focus and the
specific parts of code that contribute to its generation. Fig. 3
overviews our CCLink design.

Let us consider an NCG approach, the code and its
resulting comment generated by the approach. CCLink first
determines the focuses in the comment. Next, CCLink con-
siders the NMT model in the NCG approach as a black box
in analyzing the mapping of code segments to the focuses.
CCLink interpret the comments in a black-box manner
because we aim at providing a generic interpretation frame-
work to improve the usability of NCG. We intentionally
design CCLink to be model-independent, which relies on
no knowledge of the NMT model including any white-box
information of the model. Our purpose is to cope with all
neural comment generation approaches, embracing emerg-
ing ones.

To this end, CCLink first generates a series of code
mutants, where a mutant is a slight modification of the orig-
inal code. By taking each code mutant as an input for the
NMT model, CCLink obtains its corresponding comment.
Then, according to the resulting comments, for each focus,
CCLink can group the mutants into two categories: One
includes those that produce the focus; The other contains
those that do not. These two resulting categories can allow

Fig. 2. A motivating example.
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CCLink to determine which parts of the code contribute to
the generation of each focus with data mining algorithms.
Finally, such a mapping can be visualized to developers.
They can examine whether every focus describes its corre-
sponding code segments. This can facilitate their further
correction of the comment generated with the original code.

Next, we will first discuss how CCLink finds the focuses,
generates code mutants, and obtains the resulting two cate-
gories of data for each focus in Section 3.1. The interpretation
mechanisms of CCLink will be discussed in Section 3.2.
Finally, we will elaborate CCLink’s user interface in
Section 3.3.

3.1 Data Preparation

We first describe how CCLink determines the focuses in the
comment. Note that comments are natural language senten-
ces. There is already a rich body of literature in the natural
language processing community that studies how to find
the key information in a natural language sentence (e.g.,
[42], [43], [44]). This allows us to conveniently borrow the
existing, well-accepted concepts and approaches to retrieve
the focuses. Hence, CCLink conducts this task by invoking a
plugin algorithm. Such a plugin can easily be substituted
with any other similar algorithms. In particular, in our
study we use RAKE [45], a widely-used rapid automatic
keyword extraction algorithm to retrieve the focuses. It can
identify important phrases, i.e., those conveying key infor-
mation, in a sentence.

With a set of focuses, CCLink’s task now is to find the
code segments that contribute to the generation of the
focuses. An instant idea is to analyze how the NMT model
processes the input code, and accordingly determine which
parts of the code contribute the most to the production of
each focus. However, interpreting a deep learning model
like NMT is still a challenging, open problem [36], [37], [38],
[39], [40], [41]. Moreover, as we have discussed, CCLink
aims at providing a generic interpretation framework to
improve the usability of NCG. Such an interpretation
attempt should be orthogonal to the line of research efforts
that improve the NMT model per se. Hence, CCLink should
be an NMT model-independent approach, which cannot
base its design on analyzing a specific NMT model. With
these considerations, CCLink resorts to a black-box approach
to analyze which parts of the code contribute to the genera-
tion of each focus.

To this end, CCLink employs a code mutation-based
method: It removes only a small segment from the original
code to generate a code mutant. The purpose is to facilitate
the examination of whether the removed code segment con-
tributes to the generation of a focus. It also carefully avoids
changing the code syntax structure, since some NCG
approaches (e.g., [7], [29]) may require such structure infor-
mation in generating comments.

Now we discuss how CCLink performs such removal to
generate code mutants. First, CCLink should determine the
granularity of the code segment to be removed. An instant
measure is to remove some lines of codes. But, such a granu-
larity is not suitable, since the original code per se may typi-
cally have only a few lines (We will provide our
experimental study on such a granularity in Section 4). Con-
sider the fact that in practical software projects, the inten-
tion of code is typically suggested by the natural language
words in the code (e.g., the variable names) [21], [22].
CCLink allows developers to obtain a fine-grained link
between the code and the focuses by removing such words
in the original code.

Specifically, CCLink conducts tokenization on the original
code as follows. It first considers only the English alphabet
and disregards other symbols by substituting them with
spaces. For example, the ”if(isInitialized)”will be transformed
to ”if isInitialized”. In this way, the snake-case names can also
be separated intowords, e.g., ”file_name”will be transformed
to ”file name”. Then CCLink removes the programming-lan-
guage keywords (e.g., ”public” and ”int”) except those for
flow control (e.g., ”if”), since the flow-related keywords may
determine the behavior of the code. CCLink thus obtains a
sequence of words (not necessarily natural language ones). It
then tries to split each word if they are not in English vocabu-
lary. This is mainly for separating camel-case names. For
example, ”fileName” will be transformed into ”file name”.
Eventually, CCLink transforms the code into a set of tokens
(i.e., words). It then randomly selects the tokens from the list,
and removes them from the code to generate codemutants. A
mutant m can thus be modeled by the set of tokens Tm

removed from the original code. Fig. 4 shows the abovework-
flow of generating a codemutant. The removed tokenswill be
replaced with blank placeholders to keep the code structure
unchanged.

Finally, CCLink uses the target NCG approach to gener-
ate comments based on these code mutants. In this way, for

Fig. 3. CCLink overview. The workflow consists of three phases: 1) Generate code mutants and obtain corresponding comments by the NCG
approach; 2) Adopt data mining approaches to interpret which parts of the code contribute to the generation of each focus; 3) Visualize the interpreta-
tion results to developers.
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each focus k, these code mutants can be divided into two cat-
egories: one can produce the comments with the k (denoted
byMk) and the other without (denoted byMk).

3.2 Comment Interpretation With Contribution
Mining

After obtaining the code mutant categories, we can prelim-
inarily infer the impact of the removed tokens on a specific
focus, i.e., if the removal of some tokens results in the
absence of focus k (The corresponding code mutants are in
Mk), it is reasonable to believe that these tokens have more
impact on k. However, infering what exactly causes the gen-
eration of each focus is not easy. We can find in our experi-
ments that the absence/presence of a specific token does
not always result in the absence/presence of a focus.

For example, consider the simple code shown in Fig. 5
and attendgru [8] as our NCG approach. A mutant where
the tokens ”inet” and ”address” are both removed from the
original code cannot produce a comment with the focus”ip
address”. However, a mutant where the tokens ”address”
and ”ranges” are both removed can produce the focus”ip
address”. We can see that the absence of the token
”address” in the mutants may not always indicate the
absence of a focus”ip address” in the generated comments.

This is actually not surprising due to the complication of
deep learning. An NMT model is non-linear in nature. Its
behaviors (i.e., whether to produce a focus) cannot be simply
determined by checking whether a specific token exists or
not. In this regard, CCLink models the comment interpreta-
tion problem as one that infers a combination of tokens,
which are more likely to cause the NMT model in produc-
ing the focus of concern.

We consider token combinations because it is more suit-
able to model the non-linear nature of an NMT. Moreover,
presenting several tokens to the developer can provide
more information for her to determine the correctness of the
focus, than presenting only one single token. Inferring such
a token combination is essential to provide an approximate
black-box model of the non-linear, complicated behaviors of
the target NMT. Hence, we have to resort to heuristic meth-
ods. Next, we customize three interpretation methods,
namely, FreqCM, LimeCM, and AnchorCM as examples.

3.2.1 FreqCM

The first method FreqCM (Frequent pattern-based Contri-
bution Mining) conducts token combination inference with
frequent pattern mining [46]. Specifically, given the two sets
of mutants Mk and Mk, consider a token combination that
exists frequently in the collection of Tm0 (8m0 2 Mk), but

exists rarely in the collection of Tm (8m 2 Mk). We can infer
that the code segments containing such a token combination
are removed from the original code, the focus k is more
likely to be absent in the resulting comments. Thus, such a
token combination can be considered as that contributing
the most to the generation of the focus.

Hence, FreqCM applies a similar procedure as that in the
Apriori algorithm, a classic frequent pattern mining algo-
rithm [47]. Given a token combination tc, the collections of
Tm0 (8m0 2 Mk) and Tm (8m 2 Mk), it relies on a breadth-first
search strategy to count the numbers of occurrences of tc in
both collections respectively. The occurrence numbers are
divided by their corresponding collection sizes for normali-
zation purpose, the values of which are denoted by sup0tc
and suptc respectively. sup0tc � suptc is then deemed as the
support of the combination. A higher support indicates the
combination occurs more frequently in the collection of Tm0
(8m0 2 Mk) than it occurs in the collection of Tm (8m 2 Mk).
The support is considered as the contribution of the token
combination. We formalize this process as follows:

sup0tc ¼
count0ðtcÞ

jTm0 j
suptc ¼

countðtcÞ
jTmj

conk
tc ¼ sup0tc � suptc

where jTm0 j and jTmj represent the collection sizes of Tm0 and
Tm, count

0ðtcÞ and countðtcÞ represent the occurrence num-
bers of tc in Tm0 and Tm respectively, conk

tc is the contribution
value of tc on focus k.

FreqCM then recursively extends such subsets until no
further successful extensions are found. In this way, it can
obtain the token combination with the maximum contribu-
tion, and consider it as the result. In case the two token com-
binations have the same highest contribution value, FreqCM
chooses the one with more tokens, in order to provide more
information to developers.

3.2.2 LimeCM and AnchorCM

Note that FreqCM is not the only choice. There is also much
recent work that attempts to interpret sequence-input deep
learning models. Two representative model-independent
interpretation approaches are LIME[17] and Anchor [18].
An instant consideration is that CCLink may resort to such
existing approaches.

Fig. 4. The workflow of generating a code mutant.

Fig. 5. Example of different impacts caused by removing the same token.
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However, recent approaches (e.g., LIME and Anchor) are
generally designed to interpret deep learning models that
perform classification tasks, instead of NMT. Fortunately,
we show that our interpretation problem can also be trans-
formed into a set of classification interpretation problems,
where existing approaches can be applied. In particular,
consider the mutants as the inputs, and whether or not a
focus is present in their corresponding generated comments
as a Boolean output. The NMT model can then be deemed
as one that conducts a two-class (i.e., presence/absence)
classification task for the focus. In this way, CCLink can
apply both LIME and Anchor to determine the contribu-
tions of the token combinations. Specifically, we name
them LimeCM (LIME-based Contribution Mining) and
AnchorCM (Anchor-based Contribution Mining). Next, we
will first briefly introduce LIME and Anchor, followed by
showing how we tailor LimeCM and AnchorCM for our
comment interpretation task.

LIME [17] constructs a linear, interpretable model to
locally fit the behavior of a complicated deep learning
model. In particular, LIME randomly perturbs an original
input sequence by randomly removing its elements. It takes
these perturbed sequences as inputs and applies the target
deep learning model to obtain their corresponding classifi-
cation results. The sequences, together with the results, are
used as training cases to train a simple, linear classifier.
Based on the parameters of the linear classifier (i.e., the
weights of the elements in the sequences), LIME can model
the contributions of the elements. Such contributions are
then considered as an approximation to interpret how each
element in the input sequence influences the result of the
deep learning classifier.

Anchor [18], in contrast, finds the invariant if-then rules.
Specifically, such an if-then rule indicates that if an input con-
tains a set of specific subsequences, namely anchors, then the
model will produce a specific classification result. It perturbs
the input sequence with a natural-languages word embed-
ding-based method, and lets the model produce the results.
It then accordingly calculates a contribution value of the sub-
sets of the element with the KL-LUCB algorithm [48]. The
ones with high contributions are considered the anchors.

LIME perturbs the input sequence by randomly remov-
ing its elements. Anchor perturbs the input sequence by
substituting similar natural-language words. But their per-
turbation methods are orthogonal to their inference mecha-
nisms. Hence, in LimeCM and AnchorCM, we substitute
the perturbation methods with our code-mutation method
discussed in Section 3.1 as it is more suitable for programs.

Since LIME calculates the contribution of each token sep-
arately, we consider the top N tokens with the highest con-
tributions as the resulting token combination. The
contribution of token combination is considered as the aver-
age of the N values. N is a parameter in LIME with default
value six [17]. LimeCM adopts this default setting. Simi-
larly, the contribution value of tc on k is denoted as conk

tc,
and its formal definition is as follows:

conk
t ¼ weightðtÞ

conk
tc ¼

P
conk

t ð8t 2 TtopN Þ
N

where weightðtÞ means the weight assigned to token t in the
liner model, TtopN is the collection of tokens with top N con-
tribution value conk

t .
In contrast, Anchor per se finds token combinations. So,

AnchorCM applies Anchor’s inference mechanism, and
takes the anchor with the highest contribution value (also
denoted as conk

tc for consistency) as the result.
The computational complexity of LIME is linearly related

to the number of training samples, i.e., the number of
mutants. Its efficiency is acceptable. Anchor, in contrast,
resorts to an exhaustive search of token combinations,
which may result in low computational efficiency. We will
study their computational efficiency in Section 4.

Finally, note that our comment interpretation methods
FreqCM, LimeCM, and AnchorCM may be further substi-
tuted with one that customizies other sequence-input deep
learning interpretation approaches, including the possible
improved approaches in the future. Our AnchorCM and
LimeCM can serve as examples to guide such customiza-
tion. In this regard, CCLink again resorts to a plugin-based
design, where new deep learning interpretation approaches
can be easily applied.

3.3 Visualization and User-Interaction
Considerations

Our comment interpretation aims to facilitate developers to
comprehend code and write comments. It is important to
provide a usable graphic user interface module for CCLink.

First, CCLink should present an easy-to-comprehend
illustration of the code-comment links. Inspired by Taran-
tula [49], a classic visualization tool for fault localization,
CCLink also displays focus and its corresponding token
combination in a spectrum-alike manner. We color each
focus and its corresponding parts in the source code the
same, to facilitate a clear understanding of the link between
them.

In addition, the execution time of tool during UI interac-
tion with users is a critical concern to its practical applica-
tion, as confirmed by tremendous HCI research. To reduce
such time, we divide the execution of NCG and the
CCLink’s interpretation process into two parts: the light-
weighted UI and the computation-intensive backend run-
ning with the target NCG approach. Such a design also
allows the UI of CCLink to be implemented as an IDE
plugin easily.

The backend implements the mechanism discussed in
Sections 3.1 and 3.2. Since in our use scenario, the target
code to be comprehended is available beforehand. This
allows us to conduct the NCG process (which may require
over 100ms to complete in desktop computers [7], [8]) and
the comment interpretation at the backend offline. In other
words, it is conducted not during the developers are com-
prehending the code and modifying the auto-comments,
but beforehand. Its results are then saved.

When a developer intends to comprehend the code and
modify the auto-comments, the UI of CCLink loads the
results and present to the developers the graphic illustra-
tion. Such illustration of results is light-weighted, which do
not incur noticeable latency to the developers, since the
results are already available.
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Fig. 6 presents the user interface (UI) of our CCLink pro-
totyping implementation. The UI includes three parts: The
code, the auto-generated comments by an NCG approach,
and an edit box for developers to correct the comments. A
developer can load the code of concern, then generate its
comment with the NCG approach. CCLink then interprets
the results. When she moves her mouse pointer to the focus
of her concern, the interpretation will be shown by coloring
the focus and the corresponding parts in the source code. In
this way, the developer can check whether the focuses cor-
rectly describe the intention of the code. If the answer is no,
she can accordingly modify the comment. We will present
an empirical study on the usability of such a comment inter-
pretation tool, which will be presented in Section 5.

4 PERFORMANCE STUDY

In this section, we present our performance study on
CCLink. In particular, we focus on the following research
questions:

� RQ1: What is the interpretation quality of CCLink
with different comment interpretation approaches?

� RQ2:What is the computational efficiency of CCLink
with different comment interpretation approaches?

� RQ3: Whether CCLink is model-independent, i.e.,
extendable to interpret different NMT models?

4.1 Experiment Settings

NMT Models. We consider attendgru as our target NMT
model [10] when answering RQ1 and RQ2, because it is a
representative, state-of-the-art approach, based on an
advanced deep learning technique, i.e., the Attentional RNN
Encoder-Decoder neural network. In answering RQ3, we also
test CCLink on another NMTmodel, namely ast-attend-

gru [8]. It considers two types of information on source
code, i.e., the code text, and its syntax tree.

We build the original neural networks of attendgru

and ast-attendgru respectively with the Keras (version
2.2.4) deep learning framework, which employs TensorFlow
1.12 to conduct the backend deep learning tasks. We use the
default settings proposed by the original model designers
[8], [10]. The code for modeling training can be found at

https://github.com/mcmillco/funcom [8]. Regarding the
training arguments, we set batch_size to 200 and epochs to
100. We use the default values for the rest of the arguments.

Datasets. We consider two real-world Java method cor-
pora to build our datasets. One is the corpus of attendgru
[8], the other is that of DeepCom [7]. They include both
Java methods and their comments that describe their
functionality.

For the first corpus, we first select samples from its train-
ing set. In this way, we randomly select 300 methods with
small sizes (� 20 tokens) and 300 methods with larger sizes
(21-100 tokens), in order to study the influence of input size
on CCLink performance. They are called OrigTrain-20 and
OrigTrain-100, respectively. Considering that CCLink is not
designed for producing comments, instead, it is for inter-
preting the comments. We select samples from the training
set with an aim to produce more accurate results. This
allows us to examine more easily whether CCLink can pre-
cisely interpret the generated comments.

With a similar procedure, we also randomly select sam-
ples from the test set of the attendgru corpus, and from
the DeepCom corpus. We form OrigTest-20, OrigTest-100,
DeepCom-20, DeepCom-100 datasets, respectively, where
20 and 100 have the same meaning as in OrigTrain-20 and
OrigTrain-100. The number of tokens is limited to 100 due
to the limitation of the input size of attendgru. Table 1
illustrates the average sizes of the Java methods and their
comments generated with attendgru, for our six datasets.

Setting of Mutants. The number of code mutants directly
impacts execution efficiency and interpretation quality of
CCLink. With more mutants, the interpretation quality
becomes higher because more token combinations are
explored. However, the execution time also increases due to
the increased computation overhead. To show the effect of
the different number of mutants, we evaluate CCLink (with
FreqCM) on small-scale data 1 with three different mutant
settings, i.e., 100, 500, and 1000. Fig. 7 shows that CCLink
achieves a good trade-off between interpretation quality
(how to obtain the quality measure will be elaborated in
Section 4.2) and efficiency with around 500 mutants. There-
fore, our following discussions only report the results where
the number of code mutants in each run is fixed to 500.

Experiment Environment. All experiments are running on a
server with a 6-Core Intel i7-6800K 3.40GHz Processor and
48GB DDR4 memory. Deep learning approaches are boosted
with anNvidia GeForce GTX 1070GPU. The server is running
over 64-bit Ubuntu 16.04.1with Linux kernel 4.15.0.

Fig. 6. User interface of CCLink prototype. It can also be found at https://
cclink-demo.github.io/web/.

TABLE 1
Dataset Statistics

�-20 �-100
Code Comment Code Comment

OrigTrain 13.1 7.6 47.7 7.9
OrigTest 12.3 7.8 49.8 8.1
DeepCom 11.3 8.1 51.0 8.0

Code size is in number of tokens; Comment size is in word counts.

1. We randomly sample one-third of the data from OrigTest-20 and
OrigTest-100.
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4.2 RQ1: Interpretation Quality

The key for CCLink to improve the usability of NCG is the
interpretation mechanism. Therefore, we should evaluate
the interpretation quality of CCLink, i.e., how a focus
explains its corresponding focused code. However, this is
not a straight-forward task. Actually, the quality is a subjec-
tive consideration of the developer who reads and modifies
the comments. Unfortunately, there is generally no ground-
truth value of whether a code-comment link is correct.
Hence, to compare different interpretation methods, we
resort to a heuristic following the standard method widely
adopted by previous studies [50], [51]. We consider that if
an interpretation method is more reasonable, the contribu-
tion values of the resulting interpretation (the code-com-
ment links) should tend to be more semantically correlated
with the text similarity between the resulting focused code
and the interpreted focus. Such a natural-language perspec-
tive can reflect the developer’s perception on the natural-
language texts (i.e., the words in comments or codes) [11],
and thus indicate the interpretation quality.

In this regard, similarly as the previous work [50], [51],
we also adopt Pearson correlation (ranging from -1 to 1) [52]
to measure such correlation, and deem it as the result qual-
ity of an interpretation method. Specifically, the Pearson
correlation is calculated on the tokens determined to be
important by CCLink and word embeddings produced by
GloVe [53], a widely-accepted word embedding model. For-
mally, the Pearson correlation rX;Y between two sets of data
X and Y is calculated as:

rX;Y ¼ covðX; Y Þ
sXsY

¼ EðXY Þ � EðXÞEðY Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðX2Þ � E2ðXÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðY 2Þ � E2ðY Þp

where covðX; Y Þ is the covariance ofX and Y , sX and sY are
their standard deviations, and Eð�Þ measures a mean. In our
task, X denotes the contribution values of the resulting
token combinations calculated by CCLink (a set of conk

tc

described in Section 3.2). Y denotes the text similarities
between the token combinations and their corresponding
focuses, calculated by GloVe [53]. The correlation between X
and Y measures how semantically close the interpretations
are to their corresponding focuses. In this way, we can exam-
ine how the interpretation methods perform. The higher the
Pearson correlation, the better the interpretation method.

Since CCLink interprets auto-generated comments with
three contribution mining methods we design (i.e., FreqCM,
LimeCM, and AnchorCM), we compare CCLink with each
interpretation method. In addition, to verify that a sophisti-
cated contribution mining method like FreqCM, LimeCM,

or AnchorCM is important in finding high-quality interpre-
tations, we also design a greedy-algorithm-based approach,
namely, CFL (Counting based on Frequent Lines), as a base-
line to compare with these three methods. CFL finds the
lines of code that may contribute the most to the generation
of a focus. It removes some lines of code to generate code
mutants. Similarly, the comments of the mutants are gener-
ated with the target NCG approach, each at a time. Then for
each code line, CFL counts the number of times that its
absence causes the absence of the focus. CFL considers the
lines with the maximum number as that contribute to the
generation of the focus.

Table 2 illustrates the Pearson correlation values calcu-
lated on our test data when using CFL and CCLink with dif-
ferent interpretation methods (i.e., FreqCM, LimeCM, and
AnchorCM) 2. We can see that when applying FreqCM and
LimeCM as interpretation methods, CCLink perform much
better than CFL. In particular, many of the results on CFL
are negative, indicating that the token combinations are less
semantically-relevant to the focuses. Such resulting interpre-
tations may, on the contrary, cause confusion to developers.
The results indicate that it is important for CCLink to
include a more sophisticated comment interpretation
method (e.g., FreqCM and LimeCM), rather than just using
simple, straight-forward solutions like CFL.

We also find that the results on OrigTrain-* are close to
the results on OrigTest-* and DeepCom-*. Although the
comments in OrigTrain-* are more accurate (since they are
from the training set of attendgru), this does not signifi-
cantly affect the quality of the interpretations produced by
CCLink. Moreover, we can see that the performance of
AnchorCM is not very satisfactory, showing that some
sophisticated interpretation mechanisms do not always per-
form well. It is still an open problem to tailor better com-
ment interpretation mechanisms for CCLink.

4.3 RQ2: Computational Efficiency

We evaluate the computational efficiency of CCLink to
examine whether it is feasible in practice. Hence, we mea-
sure the average execution time of CCLink with different

Fig. 7. The effect of different number of mutants on interpretation quality
(measured by Pearson correlation, discussed in Section 4.2) and execu-
tion efficiency (measured by computation throughput, i.e., the number of
comments processed per second).

TABLE 2
Pearson Correlation Values When Using CFL and CCLink With

Different Interpretation Methods (FreqCM, LimeCM, and
AnchorCM)

OrigTrain-20 OrigTest-20 DeepCom-20

CFL 0.004 0.079 -0.098
FreqCM 0.359 0.396 0.256
LimeCM 0.140 0.199 -0.002
AnchorCM -0.291 -0.268 -0.318

OrigTrain-100 OrigTest-100 DeepCom-100

CFL -0.108 -0.140 -0.063
FreqCM 0.210 0.199 0.083
LimeCM 0.276 0.282 -0.122

2. As CCLink with AnchorCM cannot produce a result less than ten
minutes for each method in the datasets with larger code size (i.e., Orig-
Train-100, OrigTest-100, and DeepCom-100), we do not apply
AnchorCM to those datasets.
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interpretation methods on each of the Java methods in the
six datasets. The results are shown in Table 3.

We can see that CCLink with AnchorCM has the largest
execution time, compared with the other two. It takes over
50 seconds on average to complete a method in the datasets
with small code size (i.e., OrigTrain-20, OrigTest-20, and
DeepCom-20). It even fails to produce results in 10 minutes
for each method in the rest three datasets. In such a long
time, a developer can even read/comprehend the code by
herself. This indicates that AnchorCM, although shown as a
sophisticated interpretation method, does not show advan-
tages in our task.

The average execution time of CCLink with FreqCM to
process a method is about 7 to 8 seconds, which is slightly
faster than CCLink with LimeCM.We also find that their exe-
cution time on methods with different sizes (those in the �-20
datasets and those in the �-100 datasets) is close. This is
because the target NMT, i.e. attendgru, will always pad its
inputs to 100 tokens for all 500 mutants of a method. The time
to generate comments of the mutants is hence similar. More-
over, the execution time of FreqCM and that of LimeCM are
both linearly related to the number of mutants. Therefore, the
execution time of CCLink with FreqCM/LimeCM will not
vary significantly givenmethodswith different sizes.

In conclusion, the computational efficiency of CCLink
with different interpretation methods varies. CCLink with
FreqCM, which requires less than 10 seconds to complete a
method, is a good choice. Anchor, although shown as an
advanced interpretation approach for deep learning, does
not show advantages in our problem setting.

4.4 RQ3: Model Extendablity

As introduced in Section 3, our design of CCLink does not
rely on the specifics of the target NMT model. It is a model-
agnostic approach. We verify this by applying CCLink to
interpreting comments generated by different NMTmodels.
Specifically, we test CCLink on ast-attendgru [8],
another NMT-based comment generation approach. It uses
both code text and th corresponding abstract syntax tree as
the model inputs.

Since CCLink with AnchorCM suffers bad efficiency, in
this study, we only consider CCLink with FreqCM and with
LimeCM. Similarly, we evaluate the Pearson correlation
and the execution time of CCLink on the same datasets
except DeepCom-�, because they cannot reproduce the
required AST. Table 4 shows the results when the target
NCG is ast-attendgru. We can see that CCLink

performs similarly in terms of both Pearson correlation and
execution time. This proves that CCLink is model-agnostic
and can be applied to interpret different NCG approaches.

5 EMPIRICAL STUDY

CCLink interprets the comments generated by NCG
approaches, with an aim to facilitate developers to compre-
hend code and correct the comments. Hence, it is critical to
evaluate CCLink from the perspective of developers. To this
end, we conduct an empirical study to verify the usability
of CCLink. Our study aims to answer the following research
questions:

� RQ4: Can CCLink improve the efficiency of develop-
ers to comprehend and correct auto-generated
comments?

� RQ5: Can CCLink improve the quality of comments
corrected by developers?

� RQ6: What impact does CCLink have on developers’
workflow when using NCG tools?

� RQ7:How satisfied are developers with CCLink?

5.1 Experiment Settings

Our study consists of two stages. First, we design a com-
ment correction task to simulate code comprehension in
practice. Then, we communicate with developers to under-
stand their behaviors and thoughts. The settings for each
stage are illustrated separately.

5.1.1 The First Stage

In the first stage, we examine whether CCLink can help
developers in code comprehension and comment correc-
tion. We recruit participants with over five-year Java pro-
gramming experience based on our social connection, and
then extend the participant set with snowball sampling [54].
In total, we recruit 32 qualified participants, including soft-
ware engineers in global software companies and graduate
students majoring in computer science. We consider them
as representative target users of CCLink.

We ask each participant to conduct an online experiment
by accessing the website of CCLink, which typically lasts
for 40 minutes. This experiment simulates the scenario
where developers intend to contribute comments to open
source projects using NCG tools. In this scenario, develop-
ers read code written by others. Hence, we adopt Java code
from existing projects. We randomly select 20 Java methods

TABLE 3
Average Execution Time (in Second) of CCLink With Different

Interpretation Methods on Each Java Method

OrigTrain-20 OrigTest-20 DeepCom-20

FreqCM 8.01 7.69 7.86
LimeCM 9.48 9.35 10.02
AnchorCM 60.97 51.76 60.98

OrigTrain-100 OrigTest-100 DeepCom-100

FreqCM 7.08 7.75 7.43
LimeCM 9.20 10.65 10.64

TABLE 4
Pearson Correlation Values and Average Execution Time (in

Second) on Each Java Method (on ast-attendgru)

(a) Pearson correlation values

OrigTrain-20 OrigTrain-20 OrigTest-100 OrigTest-100

FreqCM 0.344 0.422 0.186 0.180
LimeCM 0.170 0.183 0.267 0.155

(b) Average execution time

OrigTrain-20 OrigTrain-20 OrigTest-100 OrigTest-100

FreqCM 7.36 7.45 8.58 7.73
LimeCM 8.89 10.53 9.41 11.16
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from DeepCom-100 dataset (described in Section 4.1) for
each of our participants. Similar to the setting of the perfor-
mance study, we generate the comments with attendgru.

In the experiment, each participant is asked to perform
the following two tasks with CCLink. Task 1: Read each of
the 10 Java methods and its auto-generated comment, then
correct the comment to best describe the method, without
enabling the interpretation function of CCLink. Task 2: Read
each method in another 10 Java methods and its auto-gener-
ated comment, and correct each comment to best describe
the method, with the comment interpretations produced by
FreqCM.3

Finally, we extract the comments corrected by the partici-
pants and the time they spent reading and correcting each
comment. We also take video-record of the entire experi-
ment. Our purpose is to guarantee the reliability of data
(e.g., a participant is not interfered by another task), and to
facilitate further behavior analysis.

5.1.2 The Second Stage

Based on the above experiment, we further explore the rea-
sons for the efficiency differences of the developers in com-
pleting the two tasks. We investigate the impact of CCLink
on developers’ workflow. To this end, we organize a think-
aloud workshop [55], where the participants are required to
tell us how they work. We invite seven participants to the
workshop, identified as P1 to P7.

During the workshop, with the same setting in stage one,
we present each participant with one randomly selected
Java method, an auto-generated comment for that method,
and the interpretation given by CCLink. Each participant is
required to reproduce the practice in the first stage, and at
the same time report her behaviors and thoughts using think
aloud approach [55].

To better understand their workflow, we record and ana-
lyze all the screen activities of the participants during the
workshop after acquiring their consent. To ensure data
validity, we also conduct a round table discussion with all the
7 participants in this stage, discussing their comment writ-
ing practice with and without CCLink during the
workshop.

We also conduct semi-structured interviews with the
participants. Our focus is their user experiences. We follow
the wide-adopted semi-structured interview methodology:
We conduct our interview without ”reading” the questions
of our interests. Instead, we adapt our questions to our com-
munication contexts. For example. We ask our participants
”when you modify unsatisfactory comments, do you read
the interpretations?”. If the answer is yes, we will further
ask ”do you find the interpretations make any sense or most
of time, they are misleading.” If our user’s response is that
the interpretations are accurate, we will ask whether the
interpretations help in modifying the comments and ask
them to elaborate how they conduct their tasks accordingly.
Otherwise, we may ask the user to give examples and talk
more on how they feel and how they continue their tasks

when they find the interpretations inaccurate. We aim to
interview in a manner that our users tell more on their sto-
ries (how they conduct the tasks and how they feel under
different situations), instead of asking them to answer a set
of predefined yes/no/why questions. We aim to obtain more
accurate understanding on our participants with such
communications.

Finally, in order to investigate the developers’ satisfac-
tion with CCLink comprehensively, we send a question-
naire to all the 32 participants to ask about their opinions on
CCLink. The questionnaire is designed according to our
interview experiences. The questionnaire include 22 ques-
tions, including general questions regarding their overall
experiences and specific ones including how they evaluate
the links in improving their workflow. We summarize the
questions in the questionnaire into several key ones pre-
sented in Fig. 8, where we merge related questions to save
space. To facilitate further research, we also release the full
questionnaire at https://github.com/CCLink-demo. We
will report our findings based on both the results of the
questionnaire and the workshop (including the round table
discussion and the interviews) in what follows.

5.2 RQ4: Efficiency Improvement

We first analyze whether the interpretations improve the
efficiency of our participants to correct the comments. Fig. 9
shows the average time for each participant to correct com-
ment of each Java method in the two tasks.

We can observe that the time for most participants in
Task 2 (with interpretation) is shorter than in Task 1 (with-
out interpretation). Averagely, our participants require
128.8 seconds to correct the comment of each method in
Task 1. The time is reduced to 93.6 seconds in Task 2. The
results indicate that interpretations given by CCLink indeed
save the time of developers to comprehend and modify the
comments in practice.

We further conduct a significance test to explore whether
there is a significant difference in the time spent by the par-
ticipants on the two tasks. Specifically, we adopt Paired
t-Test, which is suitable for testing two sets of paired sam-
ples intervened by a certain indicator. In our experiment,
the time spent by each participant in the two tasks is consid-
ered as a paired sample. We first make a hypothesis
(denoted as H0) that there is no significant difference in the
average time spent by the participants in the two tasks.

Fig. 8. Key questions in the questionnaire.

3. We choose FreqCM as our comment interpretation method as it
demonstrates good performance and computational efficiency, which
has been reported in Section 4.
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Then we calculate the t value based on the 32 paired sam-
ples, and determine to accept or reject H0 based on the t
value. Table 5 shows the result of t-Test. In our experiment,
the degree of freedom df is 31 (one less than the sample
size), and we set the significance level a as 0.01. In this case,
we can reject H0 if the t value is greater than 2.744 (the cal-
culated value is 6.949). The result indicates that the time
spent by the participants in Task 2 is significantly shorter
than in Task 1.

5.3 RQ5: Comment Quality Improvement

Besides task-completing efficiency, it is also important to
study whether CCLink improves the quality of comments
corrected by the participants. To answer this question, we
calculate the BLEU scores and edit distances (i.e., Levensh-
tein distances) between user-modified comments and the
ground truth, i.e., the human-written comments provided
in the dataset, in the two tasks. We use these two metrics as
comments are human-readable natural languages. The simi-
larity between natural language texts are generally mea-
sured by the two metrics [12]. The BLEU scores and edit
distances are calculated on word level. A higher BLEU score
and a smaller edit distance represent a better result. We
obtain the average values of the BLEU scores and edit dis-
tances of all our partipants’ result. We find that in Task 2,
the user-modified comments can achieve both a higher
BLEU score (improved by 0.11 compared with Task 1 aver-
agely) and a smaller edit distance (improved by 1.27 com-
pared with Task 1 averagely) with the ground truth. Again,
we also conduct Paired t-Test on these results. The test
setup is the same as described in Section 5.2. Table 6 shows
the results of the t-Test. The results indicate that with the
interpretation of CCLink, the quality of comments corrected
by the participants has significantly improved.

In addition, the participants also confirm that CCLink
improves the quality of their modified comments. Based on
the results of the questionnaire, 25 participants consider the

quality of their modified comments in Task 2 is higher than
those in Task 1. We also ask participants to read their modi-
fied comments and rate their satisfaction level (from 1 to 10)
with their modification. The results show that the average
level is 5.94 in cases without interpretations. Whereas, it
substantially increases to 7.47 when they use CCLink with
comment interpretations. These results again indicate that
the interpretability studied in our work should be of critical
concern.

5.4 RQ6: Workflow Changes

Instead of being satisfied by the fact that CCLink elevates
the efficiency of comment correction, we decide to take a
step further and illustrate why CCLink can achieve the effi-
ciency. We analyze the screen activities recorded during the
workshop, as well as the records of the round table discus-
sion. Based on these materials, we summarize the workflow
of participants with/without CCLink, shown in Fig. 10.

We find that without CCLink, the participants typically
complete their tasks with three steps: 1) Get a first impres-
sion of the presented method by quickly glancing at the
method name and the auto-generated comment. 2) Read the
whole method body to fully comprehend the meaning of
the method. 3) Rewrite the comment based on their under-
standing of the method. We observe that step 2 typically
requires considerable time, as the difficulty of understand-
ing the method body is non-trivial. As P6 said during the
discussion: ”I often track the inputs, calculating key parameters
while reading code in the method body. sometimes I have to read
some lines repeatedly to ensure I have understood them correctly.”

However, when the participants conduct the tasks with
CCLink, their workflow changes a lot. While the first step is
similar to the above, in step 2 the participants do not read
the whole method body. Instead, they check specific code
snippets based on the code-comment link provided by
CCLink, then determine the correctness of the comment
words. If a participant thinks the comment is inaccurate in

Fig. 9. Average time for each participant to correct comment of each Java method in the two tasks.

TABLE 5
The Result of Paired t-Test Based on the Time Spent by the 32

Participants in the Two Tasks

Degrees of freedom
(df)

Significance level
(a)

t Accept/Reject
H0

31 0.01 6.949 Reject

TABLE 6
The Results of Paired t-Test Based on BLEU Scores and Edit
Distances Obtained From the 32 Participants in the Two Tasks

df a t Accept/RejectH0

BLEU scores 31 0.01 15.122 Reject
Edit distances 31 0.01 12.758 Reject
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describing the method, she typically substitutes certain
words with suitable ones, and leaves the sentence structure
unchanged.

The result indicates that CCLink changes the original
read-understand-write practice into a more effective revi-
sion-based workflow. The perceived effectiveness of CCLink
in the workflow reported by the participants can be summa-
rized as follows. 1) With the interpretations, they can focus
on the specific code snippet, which saves their time by avoid-
ing reading the entire code. 2) The interpretations, in turn,
allow them to quickly examine the correctness of comments.
3) The key information highlighted by CCLink can inspire
them to revise the auto-generated comments precisely,
and also efficiently by allowing them to reuse the sentence
structure.

5.5 RQ7: User Satisfaction

To obtain a more comprehensive view of the participants’
satisfaction towards CCLink, we analyze the opinions of all
the 32 participants in the questionnaire and the results
obtained from the workshop.

The majority of our participants explicitly consider
CCLink helpful. During the round table discussion, 71.4%
(5/7) of our participants explicitly propose that CCLink
helps in both program comprehension and comment modi-
fication. The effectiveness of CCLink is also confirmed in
the questionnaire where 81.3% (26/32) of the participants
express that the interpretations provided by CCLink sub-
stantially facilitate their tasks.

We are particularly interested in analyzing why some par-
ticipants do not explicitly consider interpretations helpful.
According to the feedback of six such participants in the ques-
tionnaire, one reports that when he reads the first auto-gener-
ated comment, he considers that the comment is irrelevant to
the code.He feels bored anddoes not read any auto-generated
comments from then on. The other five participants share sim-
ilar considerations, although their attitude is less negative.
Actually, their negative attitude is due to the bad quality of
the auto-generated comment, instead of CCLink. This con-
firms that bad auto-generated comment incurs unwillingness
to use NCG, and hence our direction in this work to improve
NCG usability is important. Moreover, their negative attitude
also gives us inspirations to improve CCLink. For example, in
a scenariowhere the auto-generated comment is of poor qual-
ity, e.g., the semantic similarity between code and the
comment is extremely low, CCLink could reduce the interpre-
tations of the comment. In this way, CCLink may prevent
interpretations from further misleading users. Instead,
CCLink can remind users that the comment is of low quality
to save their efforts.

Finally, we also find that CCLink increases the willing-
ness of our participants in using NCG approaches. First, 18

of our participants, to some extent, express their negative
attitudes toward NCG without interpretations. Their rea-
sons include ”poor accuracy” as we have discussed. They
consider it more time-consuming in modifying the poor
comments rather than writing them directly. Ten of them
confirm their willingness to adopt NCG approaches in their
production development practice, if being provided inter-
pretations as CCLink. P7 suggests we integrate CCLink into
popular IDEs so that developers can use it more conve-
niently. This confirms our argument that usability can be
improved by not only increasing accuracy, but reasonable
interpretations.

6 FURTHER DISCUSSIONS

6.1 Case Analysis

We now demonstrate some examples of links identified by
CCLink. Fig. 11 shows three cases, each containing a Java
function, the auto-generated comment, and the link identi-
fied by CCLink. We highlight each focus in the comments
and the linked code with the same color.

The first case is a successful case where the interpretation
helps correct the comment. The focus”unregister” is linked

Fig. 10. Comment correction workflow comparison.

Fig. 11. Examples of interpretations produced by CCLink.
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to the function name ”unregisterListener”, and ”metadata
provider” is linked to the statement of calling the function
”removeMetaDataChangeListener”. With this interpreta-
tion, developers can realize that this function is used to
unregister the metadata change listener, instead of the meta-
data provider. They can instantly correct the auto-generated
comment.

The second case shows the effectiveness of CCLink even
when the auto-generated comment is of poor quality. In this
case, the comment contains ”<UNK>”, an unknown word.
This is typically caused by the low frequency of the gener-
ated word or the anomalous behavior of the NMT model.
Fortunately, CCLink can still link the ”<UNK>” to the con-
tributed code, which is ”location” in the function name.
With the help of CCLink, developers can quickly find what
the unknown word means and correct the comment corre-
spondingly. The other link of ”time value” is also correct in
this case, also helping them check the correctness of the
focus quickly.

The code in the third case is more complicated than the
previous two, and the link between code and comment is
less obvious. This function is to add a shard at a specified
index. In this case, the links identified by CCLink are not
fully accurate. First, the focus”new shard” is linked to the
statement of getting a new shard from the shard list. This is
a correct link that helps developers understand the source
of the”new shard”. Another focus”specified index” is linked
to the statement related to the shard ID, which is also a help-
ful link that facilitates a quick check. However, the
focus”list” is linked to the function signature, which is not
much related to the ”list”. The reason for this inaccurate
link may due to the poor quality of the auto-generated com-
ments, as we have discussed in Section 5.5.

The above example code-comment links can illustrate the
use scenario of CCLink. We can see that with the help of
CCLink, developers can examine the correctness of the
auto-generated comments conveniently and make modifica-
tions more quickly. This can thus improve the usability of
NCG approaches, and in turn the developers’ efficiency in
writing comments.

6.2 Implications to Future Work

In this work, we propose CCLink to interpret code com-
ments generated by NCG approaches, as an attempt to
improve the usability of NCG approaches. Next, we discuss
the implications of our work to future work on automatic
code comprehension. First, the key insight of our work is
that the community should also focus on the interpretability
of NCG approaches, as as to improve its usability. Existing
NCG approaches are still far from applicable in practice
due to their poor usability. In particular, it is hard to inter-
pret the auto-generated comments for developers to correct
the comments. Our work show that enhancing its interpret-
ability is a promising research direction for NCG. We expect
our interpretation framework CCLink can shed light to
future research efforts in this direction.

Also, our empirical study indicates that the quality of
auto-generated comments has an impact on the effective-
ness of interpretation. So it is still important to improve the
quality of auto-generated comments. Existing work mainly

focuses on designing more sophisticated deep learning
models. However, there may be other more effective ways
to improve NCG approaches, e.g., building task-specific
datasets and proper data preprocessing. This is still an open
problem worthy of further exploration.

Another promising future work is to explore what kinds
of interpretations are considered more helpful by the devel-
opers. In our empirical study, our investigation shows that
most participants emphasize the importance of semantic
similarity. In other words, they consider the interpretations
with high semantic similarity to the focuses are more helpful.
This is consistent with our metric for evaluating interpreta-
tion quality in Section 4.2. Nonetheless, comprehensive
human-subject studies of this problem are of interest, calling
for joint research efforts from both the software engineering
community and the computer-supported cooperative work
community. Example research questions include what
phrases in the comments are more worthy of attention and
which parts of code are more likely to generate valuable
comments.

6.3 Threats to Validity

We also discuss the threats to the validity of our study and
the measures we take to address them. First, datasets are
critical considerations, which may mislead our findings. We
consider two Java code corpora well-recognized in many
existing studies. Both are based on real-world projects.
Hence, they are good representatives of real code. We also
carefully perform random sampling to avoid possible bias.

Second, it is difficult tomodel users’ perception of interpre-
tation quality with a quantitative indicator. To address this
issue, we use Pearson correlation, the semantic correlation
between a focus and its interpretation, to indicate interpreta-
tion quality. Our consideration is based on the well-accepted
concept that code is also human-readable communication
[11]. Meanwhile, such a method is also applied in existing
work that evaluates the interpretation quality of DNN lan-
guagemodels [50], [51].

Third, CCLink mainly uses attendgru in our study.
A possible threat is whether CCLink can work with other
approaches. In fact, CCLink is carefully designed without
relying on the specifics of the NCG approaches. We also
study CCLink by applying it to another NCG approach in
our experimental study, which confirms our claim. In this
work, we design and apply only three contribution min-
ing methods (FreqCM, LimeCM, and AnchorCM). There
may be many possible heuristics for result interpretation.
Contribution mining can influence our results. Further
possible enhancement can be applied. CCLink actually
implements contribution mining as a plugin to facilitate
further improvement.

Lastly, participants may bring bias to our results. For
example, an inexperienced programmer may tend to rely
more on auto-generated comments, and cannot precisely
write comments. So we recruit 32 participants who have over
five years of Java programming experience. We consider they
are representatives of CCLink’s target users. We also analyze
the videos of experiments and confirm that they conduct the
tasks smoothly as we expected. The results from the empirical
study are reliable to produce our findings.
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7 RELATED WORK

7.1 Automatic Code Summarization

Automatic code summarization has long been studied to
facilitate code comprehension. Many approaches have pro-
posed to construct a set of complex rules, based on which
comments can be generated with a template [4], [5]. Recent
studies suggest that deep neural networks (DNNs) be
applied to this task. Such neural comment generation
(NCG) approaches automatically learn from existing code-
comment data to produce comments for new code.

NCG for subroutines (e.g., function-level code snippets) is
one widely-studied topic. Early studies treat source code as
plain text. Iyer et al. [6] propose CODE-NN, which adopts
LSTMnetworkswith attention (a classicNMTmodel) to gener-
ate sentences that describe C# code snippets and SQL queries.
Allamanis et al. [27] introduce an attentional convolutional
neural network (CNN) to summarize source code snippets.
Recent work also proposed to consider code structures. Hu
et al. [7] propose DeepCom, using abstract syntax tree (AST) to
annotate the words in Java methods as the input of NCG.
CODE2SEQ [29] also leverages the syntactic structure of pro-
gramming languages to better encode source code. LeClair
et al. [8] propose a novel NMT model ast-attendgru that
combineswords from codewith its AST to generate code- com-
ments. Hu et al. [9] propose Hybrid-DeepCom, improving
DeepComwith hybrid lexical and syntactical information.

Works related to NCG also include code change summari-
zation. Jiang et al. [56] and Loyola et al. [57] apply NMT to
automatically summarize code changes (i.e., commit mes-
sages). Liu et al. [58] further adopt anNMTmodel to automat-
ically generate pull request (PR) descriptions based on the
commit messages and the added source code comments in
the PRs. Tufano et al. [59] conduct an investigation on the
types of code changes that can be learned and applied auto-
matically by NMT. Hoang et al. [60] propose CC2Vec, a DNN
to produce distributed representations of code changes.

Existing learning-based approaches for code summariza-
tion have shown their advantages. However, they are not
yet widely-used in practice largely due to their accuracy
limitation and poor usability [8], [9]. This work aims to
address the usability issue of NCG. Next, we will survey
related work on software usability.

7.2 Software Usability

Software usability focuses on users’ feelings about software,
which is critical to software design. It has long been estab-
lished that usability should be considered during iteration
development [32] since it affects the usage of functionali-
ties [35]. Several design principles for usability have been
proposed [33], e.g., focusing on users as early as possible. In
the 1990s, the importance of usability was further recog-
nized and valued. For example, Mehlenbacher outlines the
weakness and strengths of several usability evaluation
approaches [61]. Usability became one of the key non-func-
tional requirements of software [34]. In recent years, the
study of usability gets more systematic. For example,
Walenstein emphasizes software usability by boundary
objects, which mitigates the gap between SE and HCI [62].

Actually, developers are users too [55], as developers
usually adopt user mindsets when making user-related

decisions during development [63] and using automatic
tools [64]. Recent studies also focus on software usability of
tools for developers. Piccioni et al. investigate the usability
of APIs [65], as APIs are user interfaces of programming
models for developers. Myers et al. summarizes several
methods that can be used for user study and improving the
usability of tools for developers [55]. Concerning automatic
documentation, Wu et al. summarizes several challenges
that hinder the usability of automatic documentation tools
[66]. Our work also focuses on tool usability, which remains
a critical research direction for the research community.

7.3 Interpretability of DNNs

To address the usability issue of NCG tools, we propose to
enhance their interpretability, as existing studies showproper
interpretations can improve the usability of such learning-
based software [17], [18]. Although sophisticated DNNs have
shown their effectiveness in many applications, it is notori-
ously hard to interpret how and why a DNN produces a spe-
cific result [20]. Despite many attempts in the literature, it
remains an open problem [36], [37], [38], [39], [40], [41].
CCLink relies on model-independent result interpretation.
Such interpretation infers why a result is produced, without
examining the implementation details of the targetmodel.

Existing work generally focuses on classification models.
Poulin et al. [67] propose ExplainD to provide a graphical
interpretation of classification results. Erik et al. [68] interpret
individual classifications with game theory. These two
approaches rely on specific types of data. LIME provides local
model-agnostic interpretations of any classifier by construct-
ing a linear model to locally fit a complex DNNmodel [17]. It
does not depend on any specifics of data and models. A simi-
lar approach isModel Explanation System (MES) [69]. Ribeiro
et al. [18] further proposeAnchor, an extension of LIMEbased
on decision rules. An anchor is a decision rule that leads to the
result. LORE [70] is another local rule-based interpretation
approach similar to Anchor. In this work, we apply LIME and
Anchor as examples to interpret comments, which is the first
exploration of applyingDNN result interpretation to this task.

8 CONCLUSION

This work focuses on the usability of Neural Comment Gener-
ation (NCG). Instead of trying to improve the performance
of NCG, we justify that existing NCG approaches suffer
from poor usability in practice due to the lack of interpret-
ability. In this paper, we design and implement CCLink to
interpret the results of NCG approaches, which aim to find
out the links between code and its auto-generated comment.
Our study proves that CCLink can provide proper interpre-
tations, which can help developers comprehend code and
write better comments. We show that CCLink is a promis-
ing direction towards the practical application of NCG,
which may shed light on this line of research.
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